Delphinidin immobilized on silver nanoparticles for the simultaneous determination of ascorbic acid, noradrenalin, uric acid, and tryptophan  Navid Nasirizadeh,

Slides:



Advertisements
Similar presentations
Lecture 6a Cyclic Voltammetry.
Advertisements

Experimental techniques Linear-sweep voltammetry At low potential value, the cathodic current is due to the migration of ions in the solution. The cathodic.
The Redox Behaviour of Diazepam (Valium®) using a Disposable Screen- Printed Sensor and Its Determination in Drinks using a Novel Adsorptive Stripping.
A Study of the Effect of Operating Potential on Detection of Hydrogen Peroxide for the Electrode Modified with Ruthenium Hexacyanoferrate Kuo-Hsiang Liao.
Table 5. Summary of electroanalytical methods found in literature survey Alankar Shrivastava et al. Various Analytical Methodologies for Determination.
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Depiction of the confocal Raman system used to excite the embedded probes and collect.
Instrumental Analysis Polarography and Voltammetry
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. From: Electrochemical Characterization of Synthesized Ni–Co and Ni–Co–Fe Electrodes for.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. From: Liquid Metal Ink Enabled Rapid Prototyping of Electrochemical Sensor for Wireless.
Voltammetry and Polarography
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
National Guidelines for Nursing Delegation
Physical properties, molecular structures, and protein quality of texturized whey protein isolate: Effect of extrusion moisture content1  P.X. Qi, C.I.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Membrane Physical Chemistry - II
Volume 102, Issue 4, Pages (February 2012)
NiO2 mediator in catalytic oxidation of 2-propanol on glassy carbon
Yongsheng Yang, Adil Mohammad, Robert T
External Tetraethylammonium As a Molecular Caliper for Sensing the Shape of the Outer Vestibule of Potassium Channels  Frank Bretschneider, Anja Wrisch,
The Phot LOV2 Domain and Its Interaction with LOV1
On the Electrolytic Stability of Iron-Nickel Oxides
3D Porous Carbonaceous Electrodes for Electrocatalytic Applications
Volume 76, Issue 2, Pages (February 1999)
Precipitation of DNA by Polyamines: A Polyelectrolyte Behavior
Tetraethylammonium Block of the BNC1 Channel
Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination  Zhimin Tao, Ryan A. Raffel,
Volume 3, Issue 6, Pages (December 2017)
FPL Modification of CaV1
Refolding of a High Molecular Weight Protein: Salt Effect on Collapse
Mesoporous Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage  Wei Zhang, Lianhai Zu, Biao Kong, Bingjie Chen, Haili.
Avanish S. Parmar, Martin Muschol  Biophysical Journal 
Volume 113, Issue 12, Pages (December 2017)
Volume 77, Issue 4, Pages (October 1999)
Volume 83, Issue 4, Pages (October 2002)
DNA biosensor as a confirmatory test: Studies of household cleaners effects of onto electrochemical DNA detection  Oliveira N.C.L. , Campos-Ferreira D.S.
Volume 2, Issue 2, Pages (February 2017)
Volume 99, Issue 8, Pages (October 2010)
Avanish S. Parmar, Martin Muschol  Biophysical Journal 
Volume 106, Issue 12, Pages (June 2014)
Volume 101, Issue 7, Pages (October 2011)
Volume 4, Issue 3, Pages (March 2018)
Volume 74, Issue 5, Pages (May 1998)
Michael Katzer, William Stillwell  Biophysical Journal 
Volume 3, Issue 6, Pages (December 2017)
Mechanistic Studies on ADAMTS13 Catalysis
Enrico Grazi, Orietta Cintio, Ermes Magri, Giorgio Trombetta 
Volume 9, Pages (November 2018)
Volume 83, Issue 6, Pages (December 2002)
Volume 102, Issue 4, Pages (February 2012)
Jiang Hong, Shangqin Xiong  Biophysical Journal 
Cyclic ADP-Ribose and Hydrogen Peroxide Synergize with ADP-Ribose in the Activation of TRPM2 Channels  Martin Kolisek, Andreas Beck, Andrea Fleig, Reinhold.
Volume 96, Issue 6, Pages (March 2009)
Thermodynamic Characterization of the Unfolding of the Prion Protein
Volume 102, Issue 4, Pages (February 2012)
2. Electrochemical techniques complementary to cyclic voltammetry.
Mei Wang, Maggie Law, Jean Duhamel, P. Chen  Biophysical Journal 
Allosteric Control of Syntaxin 1a by Munc18-1: Characterization of the Open and Closed Conformations of Syntaxin  Damian Dawidowski, David S. Cafiso 
Cyclic Voltammetry Dr. A. N. Paul Angelo Associate Professor,
Cyclic AMP Diffusion Coefficient in Frog Olfactory Cilia
Jeffrey S Diamond, Dwight E Bergles, Craig E Jahr  Neuron 
Ca2+ Regulation of Gelsolin Activity: Binding and Severing of F-actin
Arnoldus W.P. Vermeer, Willem Norde  Biophysical Journal 
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
3D Porous Carbonaceous Electrodes for Electrocatalytic Applications
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
Volume 85, Issue 1, Pages (July 2003)
Consequences of Molecular-Level Ca2+ Channel and Synaptic Vesicle Colocalization for the Ca2+ Microdomain and Neurotransmitter Exocytosis: A Monte Carlo.
Volume 4, Issue 1, Pages (January 2018)
Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2
Presentation transcript:

Delphinidin immobilized on silver nanoparticles for the simultaneous determination of ascorbic acid, noradrenalin, uric acid, and tryptophan  Navid Nasirizadeh, Zahra Shekari, Mohammad Dehghani, Somayeh Makarem  Journal of Food and Drug Analysis  Volume 24, Issue 2, Pages 406-416 (April 2016) DOI: 10.1016/j.jfda.2015.11.011 Copyright © 2016 Terms and Conditions

Figure 1 The molecular structure of delphinidin. Journal of Food and Drug Analysis 2016 24, 406-416DOI: (10.1016/j.jfda.2015.11.011) Copyright © 2016 Terms and Conditions

Figure 2 Fabrication steps of DSNPs-GCE. AgNO3 = silver nitrate; GCE = glassy carbon electrode; DSNPs-GCE = delphinidin silver nanoparticles modified glassy carbon electrode; SNP = silver nanoparticle. Journal of Food and Drug Analysis 2016 24, 406-416DOI: (10.1016/j.jfda.2015.11.011) Copyright © 2016 Terms and Conditions

Figure 3 The scanning electron microscope (SEM) images of (A) the silver nanoparticle modified glassy carbon electrode (GCE) and (B) delphinidin immobilized on silver nanoparticles on the GCE. Journal of Food and Drug Analysis 2016 24, 406-416DOI: (10.1016/j.jfda.2015.11.011) Copyright © 2016 Terms and Conditions

Figure 4 Cyclic voltammograms of the DSNPs-GCE in 0.10M phosphate buffer solution (pH 7.0) at different scan rates. The numbers 1–34 correspond to 10–175 mV/s. (A) The plots of anodic and cathodic peak currents versus the scan rate. (B) The variation in the peak potentials versus the logarithm of the scan rate. DSNPs-GCE = delphinidin silver nanoparticles modified glassy carbon electrode. Journal of Food and Drug Analysis 2016 24, 406-416DOI: (10.1016/j.jfda.2015.11.011) Copyright © 2016 Terms and Conditions

Figure 5 Cyclic voltammograms of DSNPs-GCE (at 100 mV/s) in a phosphate buffer solution (0.10M) at different pH level (range, 2.0 –12.0). The inset shows the plot of the formal potential, E0′, versus the pH. DSNPs-GCE = delphinidin silver nanoparticles modified glassy carbon electrode. Journal of Food and Drug Analysis 2016 24, 406-416DOI: (10.1016/j.jfda.2015.11.011) Copyright © 2016 Terms and Conditions

Figure 6 Cyclic voltammograms of the DSNPs-GCE in a 0.10M phosphate buffer (pH 7.0) solution in (a) the absence and (b) the presence of 0.25mM NA. (c) As (a) and (d) as (b) for a DGCE and (e, f) as (b) for SNPs-GCE and BGCE. For all the voltammograms, the scan rate was 20 mV/s. BGCE, bare glassy carbon electrode; DGCE, delphinidin modified glassy carbon electrode; DSNPs-GCE, delphinidin silver nanoparticles modified glassy carbon electrode; NA, noradrenaline; SNPs-GCE, silver nanoparticles modified glassy carbon electrode. Journal of Food and Drug Analysis 2016 24, 406-416DOI: (10.1016/j.jfda.2015.11.011) Copyright © 2016 Terms and Conditions

Figure 7 (A) Cyclic voltamograms of DSNPs-GCE in 0.1M phosphate buffer (pH 7.0) containing 0.40mM NA at different scan rates. The numbers 1–8 correspond to the scan rates of 2 mV/s, 6 mV/s, 10 mV/s, 14 mV/s, 18 mV/s, 22 mV/s, 26 mV/s, and 30 mV/s. The inset shows the variation of the electrocatalytic peak current (Ip) versus the square root of sweep rate. (B) Linear sweep voltammogram of DSNPs-GCE in 0.l0M phosphate buffer solution (pH 7.0) containing 0.40mM NA at different scan rates: 10 mV/s, 14 mV/s, 18 mV/s, 22 mV/s, and 26 mV/s. The inset shows the Tafel plots derived from the linear sweep voltammograms. DSNPs-GCE = delphinidin silver nanoparticles modified glassy carbon electrode; NA = noradrenaline. Journal of Food and Drug Analysis 2016 24, 406-416DOI: (10.1016/j.jfda.2015.11.011) Copyright © 2016 Terms and Conditions

Figure 8 Chronoamperometric responses of DSNPs-GCE in a 0.10 M phosphate buffer solution (pH 7.0) at a potential step 200 mV for different concentrations of NA. The numbers 1–8 correspond to 0.02−0.8mM NA. The insets show (A) the plots of I versus t−1/2 obtained from chronoamperograms, and (B) the plot of the slope of straight lines against the NA concentrations. DSNPs-GCE = delphinidin silver nanoparticles modified glassy carbon electrode; NA = noradrenaline. Journal of Food and Drug Analysis 2016 24, 406-416DOI: (10.1016/j.jfda.2015.11.011) Copyright © 2016 Terms and Conditions

Figure 9 (A) Differential pulse voltammograms of DSNPs-GCE in 0.10 M phosphate buffer solution (pH 7.0) containing different concentrations of NA. The numbers 1–59 correspond to 1.4–833.3 μM of NA. Insets A, B, and C show the plots of the electrocatalytic peak current as a function of the NA concentration in the ranges of 833.3–166.7μM, 166.7–26.4μM, and 26.4–1.4μM, respectively. DSNPs-GCE = delphinidin silver nanoparticles modified glassy carbon electrode; NA = noradrenaline. Journal of Food and Drug Analysis 2016 24, 406-416DOI: (10.1016/j.jfda.2015.11.011) Copyright © 2016 Terms and Conditions

Figure 10 Differential pulse voltammograms of DSNPs-GCE in a 0.10M phosphate buffer solution (pH 7.0) containing different concentrations of AA, NA, UA, and Trp. Numbers 1–13 correspond to 389.1–990.1μM of AA, 51.9–132.0μM of NA, 51.9–132.0μM of UA, and 129.7–330.0μM of Trp. The inset indicates the DPV of a mixed solution of 900μM AA, 130μM NA, 130μM UA, and 300μM Trp at the unmodified GCE. Insets A–D show the plots of the electrocatalytic peak current as a function of the AA, NA, UA, and Trp concentrations, respectively. AA = ascorbic acid; DPV, differential pulse voltammetry; DSNPs-GCE = delphinidin silver nanoparticles modified glassy carbon electrode; GCE = glassy carbon electrode; NA = noradrenaline; Trp = tryptophan; UA = uric acid. Journal of Food and Drug Analysis 2016 24, 406-416DOI: (10.1016/j.jfda.2015.11.011) Copyright © 2016 Terms and Conditions

Journal of Food and Drug Analysis 2016 24, 406-416DOI: (10. 1016/j Journal of Food and Drug Analysis 2016 24, 406-416DOI: (10.1016/j.jfda.2015.11.011) Copyright © 2016 Terms and Conditions