Integer Representations and Arithmetic

Slides:



Advertisements
Similar presentations
When NOT to use Unsigned? Don’t Use Just Because Number Nonzero – C compilers on some machines generate less efficient code unsigned i; for (i = 1; i
Advertisements

Fabián E. Bustamante, Spring 2007 Integers Today Numeric Encodings Programming Implications Basic operations Programming Implications Next time Floats.
CS213 Topics Numeric Encodings Unsigned & Two’s complement Programming Implications C promotion rules Basic operations Addition, negation, multiplication.
“The course that gives CMU its Zip!” Topics Numeric Encodings –Unsigned & Two’s complement Programming Implications –C promotion rules CS 213 F’00.
“The course that gives CMU its Zip!” Topics Numeric Encodings –Unsigned & Two’s complement Programming Implications –C promotion rules Basic operations.
CS213 Integers Apr 3, 2006 Topics Numeric Encodings
“The course that gives CMU its Zip!” Topics Numeric Encodings Unsigned & Two’s complement Programming Implications C promotion rules Basic operations.
February 4, 2003 CSCE 212 Computer Architecture Lecture 3 Representing Integers.
DIGITAL SYSTEMS TCE1111 Representation and Arithmetic Operations with Signed Numbers Week 6 and 7 (Lecture 1 of 2)
Carnegie Mellon 1 This Week: Integers Integers  Representation: unsigned and signed  Conversion, casting  Expanding, truncating  Addition, negation,
Topics Numeric Encodings Unsigned & Two’s complement Programming Implications C promotion rules Basic operations Addition, negation, multiplication Programming.
Int’s and Integers CENG331: Introduction to Computer Systems 3 rd Lecture Instructor: Erol Sahin Acknowledgement: Most of the slides are adapted from the.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Bits, Bytes, and Integers MCS-284 : Computer Organization.
1 Integer Representations. 2 Outline Encodings –Unsigned and two’s complement Conversions –Signed vs. unsigned –Long vs. short Suggested reading –Chap.
Comp Integers Spring 2015 Topics Numeric Encodings
– 1 – CS 105 Computer Systems Introduction Topics: Staff, text, and policies Lecture topics and assignments Lab rationale CS 105 “Tour of the Black Holes.
Lecture 3: Computation and Representation CS 2011 Fall 2014, Dr. Rozier.
“The course that gives CMU its Zip!” Topics Basic operations –Addition, negation, multiplication Programming Implications –Consequences of overflow.
Carnegie Mellon 1 Bits, Bytes, and Integers : Introduction to Computer Systems 3 rd Lectures, May 27th, 2014 Instructors: Greg Kesden.
Topics Numeric Encodings Unsigned & Two’s complement Programming Implications C promotion rules Basic operations Addition, negation, multiplication Programming.
ECE 2110: Introduction to Digital Systems Signed Addition/Subtraction.
Operations on Bits Arithmetic Operations Logic Operations
CS 105 “Tour of the Black Holes of Computing” Topics Numeric Encodings Unsigned & Two’s complement Programming Implications C promotion rules Basic operations.
Carnegie Mellon Introduction to Computer Systems /18-243, spring rd Lecture, Jan. 20 th Instructors: Gregory Kesden and Markus Püschel.
CS 105 “Tour of the Black Holes of Computing” Topics Numeric Encodings Unsigned & Two’s complement Programming Implications C promotion rules Basic operations.
Int’s and Integers CENG331: Introduction to Computer Systems 3 rd Lecture Instructor: Erol Sahin Acknowledgement: Most of the slides are adapted from the.
“The course that gives CMU its Zip!” Topics Basic operations –Addition, negation, multiplication Programming Implications –Consequences of overflow.
Integers Topics Representations of Integers Basic properties and operations Implications for C.
Chapter 8 Computer Arithmetic. 8.1 Unsigned Notation Non-negative notation  It treats every number as either zero or a positive value  Range: 0 to 2.
Lecture 2 Two’s Complement Proofs Topics Two’s complement January 11, 2016 CSCE 212H Computer Architecture.
Lecture 4: Representing Negative Numbers CS 2011 Spring 2016, Dr. Rozier.
Topics Numeric Encodings –Unsigned & Two’s complement Programming Implications –C promotion rules Basic operations –Addition, negation, multiplication.
Instructors: Greg Kesden
Bits, Bytes, and Integers CSCE 312
Today’s Instructor: Randy Bryant
This Week: Integers Integers Summary
Integers Topics Numeric Encodings (2.2) Programming Implications
CS 367 Integers Topics (Ch. 2.2, 2.3) Numeric Encodings
Bits, Bytes, and Integers CSE 238/2038/2138: Systems Programming
Bits, Bytes, and Integers
University of Washington
Instructor: David Ferry
“The course that gives CMU its Zip!”
CS213 Integers Topics Numeric Encodings Programming Implications
CS 105 “Tour of the Black Holes of Computing”
CS 105 “Tour of the Black Holes of Computing”
CS140 Lecture 08: Data Representation: Bits and Ints
Comp Integers Spring 2015 Topics Numeric Encodings
Representing Information (2)
Computer Systems Introduction
Integers II CSE 410 Winter 2017 Instructor: Teaching Assistants:
Bits, Bytes, and Integers January 16, 2008
Bits, Bytes, and Integers 2nd Lectures
Integers Topics Numeric Encodings Programming Implications
1 The Hardware/Software Interface CSE351 Spring 2011 Module 3: Integers Monday, April 4, 2011.
Representing Information (2)
Integers II CSE 351 Autumn 2018 Instructor: Teaching Assistants:
Representing Information (2)
Arithmetic Topics Basic operations Programming Implications
Bits, Bytes, and Integers
Representing Information (2)
Integers II CSE 351 Summer 2018 Instructor: Justin Hsia
Computer Organization COMP 210
Bits, Bytes, and Integers Part 2 3rd Lectures
Integer Representations Jan. 23, 2001
Computer Organization COMP 210
Computer Organization COMP 210
Operations and Arithmetic
Bits, Bytes, and Integers
Computer Systems Introduction
Presentation transcript:

Integer Representations and Arithmetic Signed vs unsigned representations Conversions Addition and subtraction Multiplication class03.ppt 15-213 F’02

Notations Assume we have a word X of size w. X: xw-1,xw-2,……..x0 B2U w: Binary to unsigned- unsigned representation B2T w : Binary to two’s complement- 2’s comp. representation UMAX w: unsigned maximum number TMAX w: maximum in 2’s complement UMIN, TMIN similar meanings

Encoding Integers Unsigned Two’s Complement Sign Bit short int x = 15213; short int y = -15213; Sign Bit C short 2 bytes long Sign Bit For 2’s complement, most significant bit indicates sign 0 for nonnegative 1 for negative

Numeric Ranges Unsigned Values UMin = 0 UMax = 2w – 1 000…0 UMax = 2w – 1 111…1 Two’s Complement Values TMin = –2w–1 100…0 TMax = 2w–1 – 1 011…1 Other Values Minus 1 111…1 Values for W = 16

Values for Different Word Sizes Observations |TMin | = TMax + 1 Asymmetric range UMax = 2 * TMax + 1

Unsigned & Signed Numeric Values X B2T(X) B2U(X) 0000 0001 1 0010 2 0011 3 0100 4 0101 5 0110 6 0111 7 –8 8 –7 9 –6 10 –5 11 –4 12 –3 13 –2 14 –1 15 1000 1001 1010 1011 1100 1101 1110 1111 Equivalence Same encodings for nonnegative values Uniqueness Every bit pattern represents unique integer value Each representable integer has unique bit encoding  Can Invert Mappings U2B(x) = B2U-1(x) Bit pattern for unsigned integer T2B(x) = B2T-1(x) Bit pattern for two’s comp integer

Casting Signed to Unsigned C Allows Conversions from Signed to Unsigned Resulting Value No change in bit representation Nonnegative values unchanged ux = 15213 Negative values change into (large) positive values uy = 50323 short int x = 15213; unsigned short int ux = (unsigned short) x; short int y = -15213; unsigned short int uy = (unsigned short) y;

Relation between Signed & Unsigned T2U T2B B2U Two’s Complement Unsigned Maintain Same Bit Pattern x ux X + • • • - ux x w–1 +2w–1 – –2w–1 = 2*2w–1 = 2w

Relation Between Signed & Unsigned uy = y + 2 * 32768 = y + 65536

Sign Extension Task: Rule: Given w-bit signed integer x Convert it to w+k-bit integer with same value; useful when you transfer the contents of a small word to a larger one Rule: Make k copies of sign bit: X  = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0 • • • X X  w k k copies of MSB

Sign Extension Example short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y; Decimal Hex Binary x 15213 3B 6D 00111011 01101101 ix 00 00 3B 6D 00000000 00000000 00111011 01101101 y -15213 C4 93 11000100 10010011 iy FF FF C4 93 11111111 11111111 11000100 10010011 Converting from smaller to larger integer data type C automatically performs sign extension

Justification For Sign Extension Prove Correctness by Induction on k: prove for extending one bit Induction Step: extending by single bit maintains value Proof:Show that B2Tw+1= B2Tw; write in open representation - • • • X X  + w+1 w

Negating with Complement & Increment Claim: Following Holds for 2’s Complement ~x + 1 == -x Complement Observation: ~x + x == 1111…112 == -1 Increment ~x + x + (-x + 1) == -1 + (-x + 1) ~x + 1 == -x 1 x ~x + -1

Comp. & Incr. Examples x = 15213

Unsigned Addition Standard Addition Function • • • Operands: w bits + v • • • True Sum: w+1 bits u + v • • • Discard Carry: w bits UAddw(u , v) • • • Standard Addition Function Ignores carry output Implements Modular Arithmetic s = UAddw(u , v) = u + v mod 2w

Two’s Complement Addition u • • • Operands: w bits + v • • • True Sum: w+1 bits u + v • • • Discard Carry: w bits TAddw(u , v) • • • TAdd and UAdd have Identical Bit-Level Behavior Signed vs. unsigned addition in C: int s, t, u, v; s = (int) ((unsigned) u + (unsigned) v); t = u + v Will give s == t

Detecting 2’s Comp. Overflow Task Given s = TAddw(u , v) Determine if s = Addw(u , v) Example int s, u, v; s = u + v; Claim Overflow iff either: u, v < 0, s  0 (NegOver) u, v  0, s < 0 (PosOver) ovf = (u<0 == v<0) && (u<0 != s<0); 2w –1 2w–1 PosOver NegOver

Multiplication Computing Exact Product of w-bit numbers x, y Ranges Either signed or unsigned Ranges Unsigned: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1 Up to 2w bits Two’s complement min: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1 Up to 2w–1 bits Two’s complement max: x * y ≤ (–2w–1) 2 = 22w–2 Up to 2w bits, but only for (TMinw)2 Maintaining Exact Results Would need to keep expanding word size with each product computed Done in software by “arbitrary precision” arithmetic packages

Unsigned Multiplication in C • • • Operands: w bits * v • • • True Product: 2*w bits u · v • • • • • • UMultw(u , v) • • • Discard w bits: w bits Standard Multiplication Function Ignores high order w bits Implements Modular Arithmetic UMultw(u , v) = u · v mod 2w

Unsigned vs. Signed Multiplication Unsigned Multiplication unsigned ux = (unsigned) x; unsigned uy = (unsigned) y; unsigned up = ux * uy Truncates product to w-bit number up = UMultw(ux, uy) Modular arithmetic: up = ux  uy mod 2w Two’s Complement Multiplication int x, y; int p = x * y; Compute exact product of two w-bit numbers x, y Truncate result to w-bit number p = TMultw(x, y)

Multiplication Example Consider two 5 bit numbers X and Y in 2’s c. representation X= -3(10) , Y=3(10) X*Y= -9, which is represented in 5 bits as 10111 X= 11101 Y=00011 in 10 digits: XxY=0001010111, Rightmost 5 digits give the correct unswer. That is: as long as there is no flowing to more than w its, direct multiplication gives the correct result. For flowing results to 2w bits, other algorithms such as Booth’s are used.

Unsigned vs. Signed Multiplication Unsigned Multiplication unsigned ux = (unsigned) x; unsigned uy = (unsigned) y; unsigned up = ux * uy Two’s Complement Multiplication int x, y; int p = x * y; Relation Signed multiplication gives same bit-level result as unsigned up == (unsigned) p

Power-of-2 Multiply with Shift Operation u << k gives u * 2k Both signed and unsigned: always fill in with zeros from the right side Examples u << 3 == u * 8 u << 5 - u << 3 == u * 24 Most machines shift and add much faster than multiply Compiler generates this code automatically k u • • • Operands: w bits * 2k ••• 1 ••• True Product: w+k bits u · 2k • • • ••• UMultw(u , 2k) ••• ••• Discard k bits: w bits TMultw(u , 2k)

Unsigned Power-of-2 Divide with Shift-(signed-unsigned different) Quotient of Unsigned by Power of 2 u >> k gives  u / 2k  (rounds toward zero) Uses logical shift: Fill in with zeros from the left k u Binary Point ••• ••• Operands: / 2k ••• 1 ••• Division: u / 2k . ••• ••• ••• Result:  u / 2k  ••• •••

Signed Power-of-2 Divide with Shift Quotient of Signed by Power of 2 x >> k gives  x / 2k  Uses arithmetic shift: fill in with the sign bit from the left Rounds wrong direction when u < 0(not towards zero) 1 ••• x 2k / x / 2k Division: Operands: k RoundDown(x / 2k) Result: . Binary Point

Correct Power-of-2 Divide Quotient of Negative Number by Power of 2 Want  x / 2k  (Round Toward zero): compute  (x+2k-1)/ 2k  (add 2k-1 and shift right by k digits): use the equality  x/y  =  x+y-1/y  In C: (x + (1<<k)-1) >> k Biases dividend toward 0 Example: want to divide -5(1011) to 2 (k=1). We would obtain -2 in C. But No Biasing: 011 shifted one bit to the right results with 1101=-3 Biasing:1. Add 1: 1011+0001= 1100 2. shift right one bit: 1110= -2