Math 3121 Abstract Algebra I

Slides:



Advertisements
Similar presentations
Math 3121 Abstract Algebra I
Advertisements

Math 3121 Abstract Algebra I Lecture 8 Sections 9 and 10.
Math 344 Winter 07 Group Theory Part 3: Quotient Groups
Math 3121 Abstract Algebra I
Groups TS.Nguyễn Viết Đông.
 Definition 16: Let H be a subgroup of a group G, and let a  G. We define the left coset of H in G containing g,written gH, by gH ={g*h| h  H}. Similarity.
Algebraic Structures: Group Theory II
Section 13 Homomorphisms Definition A map  of a group G into a group G’ is a homomorphism if the homomophism property  (ab) =  (a)  (b) Holds for.
Algebraic Structures DEFINITIONS: PROPERTIES OF BINARY OPERATIONS Let S be a set and let  denote a binary operation on S. (Here  does not necessarily.
1.  Detailed Study of groups is a fundamental concept in the study of abstract algebra. To define the notion of groups,we require the concept of binary.
Group THeory Bingo You must write the slide number on the clue to get credit.
How do we start this proof? (a) Assume A n is a subgroup of S n. (b)  (c) Assume o(S n ) = n! (d) Nonempty:
Math 3121 Abstract Algebra I Lecture 3 Sections 2-4: Binary Operations, Definition of Group.
Math 3121 Abstract Algebra I Lecture 9 Finish Section 10 Section 11.
Great Theoretical Ideas in Computer Science for Some.
Math 1304 Calculus I 2.3 – Rules for Limits.
Math 3121 Abstract Algebra I Lecture 5 Finish Sections 6 + Review: Cyclic Groups, Review.
Math 3121 Abstract Algebra I Lecture 10 Finish Section 11 Skip 12 – read on your own Start Section 13.
Math 344 Winter 07 Group Theory Part 2: Subgroups and Isomorphism
Math 3121 Abstract Algebra I
Math 3121 Abstract Algebra I Lecture 7: Finish Section 7 Sections 8.
Math 3121 Abstract Algebra I Lecture 11 Finish Section 13 Section 14.
UNIT - 2.  A binary operation on a set combines two elements of the set to produce another element of the set. a*b  G,  a, b  G e.g. +, -, ,  are.
Normal Subgroups and Factor Groups (11/11) Definition. A subgroup H of a group G is called normal if for every a  G, the left coset aH is the same set.
Section 14 Factor Groups Factor Groups from Homomorphisms. Theorem Let  : G  G’ be a group homomorphism with kernel H. Then the cosets of H form a factor.
Math 3121 Abstract Algebra I
CS Lecture 14 Powerful Tools     !. Build your toolbox of abstract structures and concepts. Know the capacities and limits of each tool.
Math 3121 Abstract Algebra I Lecture 14 Sections
6.3.2 Cyclic groups §1.Order of an element §Definition 13: Let G be a group with an identity element e. We say that a is of order n if a n =e, and for.
SECTION 8 Groups of Permutations Definition A permutation of a set A is a function  ϕ : A  A that is both one to one and onto. If  and  are both permutations.
SECTION 10 Cosets and the Theorem of Lagrange Theorem Let H be a subgroup of G. Let the relation  L be defined on G by a  L b if and only if a -1 b 
 Theorem 6.21: Let H be a subgroup of G. H is a normal subgroup of G iff g -1 hg  H for  g  G and h  H.  Proof: (1) H is a normal subgroup of G.
Boolean Algebra and Computer Logic Mathematical Structures for Computer Science Chapter 7 Copyright © 2006 W.H. Freeman & Co.MSCS SlidesBoolean Algebra.
Chapter 6- LINEAR MAPPINGS LECTURE 8 Prof. Dr. Zafer ASLAN.
Math 3121 Abstract Algebra I Lecture 15 Sections
Garis-garis Besar Perkuliahan
Group A set G is called a group if it satisfies the following axioms. G 1 G is closed under a binary operation. G 2 The operation is associative. G 3 There.
Prepared By Meri Dedania (AITS) Discrete Mathematics by Meri Dedania Assistant Professor MCA department Atmiya Institute of Technology & Science Yogidham.
Math 3121 Abstract Algebra I Lecture 6 Midterm back over+Section 7.
Math 3121 Abstract Algebra I
Finite Groups and Subgroups, Terminology
Relations, Functions, and Matrices
Garis-garis Besar Perkuliahan
Unit-III Algebraic Structures
Permutation A permutation of the numbers 1,2, and 3 is a rearrangement of these numbers in a definite order. Thus the six possibilities are
Great Theoretical Ideas in Computer Science
Chapter 3 The Real Numbers.
Abstract Algebra I.
Math 3121 Abstract Algebra I
Groups and Applications
Great Theoretical Ideas In Computer Science
Chapter 2 Sets and Functions.
CHARACTERIZATIONS OF INVERTIBLE MATRICES
Chapter 3 The Real Numbers.
B.Sc. III Year Mr. Shrimangale G.W.
X’morphisms & Projective Geometric
Math 3121 Abstract Algebra I
GROUPS & THEIR REPRESENTATIONS: a card shuffling approach
Homomorphisms (11/20) Definition. If G and G’ are groups, a function  from G to G’ is called a homomorphism if it is operation preserving, i.e., for all.
Great Theoretical Ideas in Computer Science
Great Theoretical Ideas in Computer Science
B.Sc. III Year Mr. Shrimangale G.W.
I. Finite Field Algebra.
Lecture 43 Section 10.1 Wed, Apr 6, 2005
Algebraic Structures: Group Theory
PHY 745 Group Theory 11-11:50 AM MWF Olin 102 Plan for Lecture 1:
Definition 19: Let [H;. ] be a normal subgroup of the group [G;. ]
Rayat Shikshan Sanstha’s S.M.Joshi College, Hadapsar -28
Rayat Shikshan Sanstha’s S.M.Joshi College, Hadapsar -28
CHARACTERIZATIONS OF INVERTIBLE MATRICES
Presentation transcript:

Math 3121 Abstract Algebra I Lecture 11 Finish Section 13 Section 14

Next Midterm Midterm 2 is Nov 13. Covers sections: 7-14 (not 12) Review on Thursday

Section 13 Homomorphisms Definition of homomorphism (recall) Examples Properties Kernel and Image Cosets and inverse images Monomorphisms Normal Subgroups

Images and Inverse Images Let X and Y be sets, and let f: X  Y Define f[A] and f-1[B] for subsets A of X and B of Y: f[A] = { b in Y | b = f(a), for some a in A} f-1[B] = { a in X | f(a) is in B}

Properties of Homomorphisms Theorem: Let h be a homomorphism from a group G into a group G’. Then 1) If e is the identity in G, then h(e) is the identity in G’. 2) If a is in G, then h(a-1) = (h(a))-1 3) If H is a subgroup of G, then f[H] is a subgroup of G’. 4) If K’ is a subgroup of G’, then h-1[K’] is a subgroup of G. Proof: Straightforward – in class and in the book

Kernel Definition: Let h be a homomorphism from a group G into a group G’. The kernel of h is the inverse image of the trivial subgroup of G’: Ker(h) = { x in G | h(x) = e’}

Examples of Kernels Modulo n: Z  Zn, x ↦ x + nZ Parity: Sn  Z2 Multiply by m: Zn  Zn, x ↦ mx n = 6, m = 1, 2, 3

Cosets of the kernel are inverse images of elements Theorem: Let h be a homomorphism from a group G into a group G’. Let K be the kernel of h. Then a K = {x in G | h(x) = h(a)} = h -1[{h(a)}] and also K a = {x in G | h(x) = h(a)} = h -1[{h(a)}] Proof: h -1[{h(a)}] = {x in G | h(x) = h(a)} directly from the definition of inverse image. Now we show that: a K = {x in G | h(x) = h(a)} : x in a K ⇔ x = a k, for some k in K ⇔ h(x) = h(a k) = h(a) h(k) = h(a) , for some k in K ⇔ h(x) = h(a) Thus, a K = {x in G | h(x) = h(a)}. Likewise, K a = {x in G | h(x) = h(a)}.

Equivalence Relation Suppose: h: X  Y is any map of sets. Then h defines an equivalence relation ~h on X by: x ~h y ⇔ h(x) = h(y) The previous theorem says that when h is a homomorphism of groups then the cosets (left or right) of the kernel of h are the equivalence classes of this equivalence relation.

Monomorphisms and Epimorphisms Recall: A homomorphism h: G  G’ is called a monomorphism if it is 1-1. A homomorphism h: G  G’ is called an epimorphism if it is onto.

Monomorphism Test Theorem: A homomorphism h is 1-1 if and only if Ker(h) = {e}. Proof: Let h: G  G’ be a homomorphism. Then h(x) = h(a) ⇔ x  a Ker(h). If Ker(h) = {e}, then a Ker(h) = {a} and h(x) = h(a) ⇔ x = a. If Ker(h) is larger, then there is an k different from e in Ker(h), then ak ≠ a and h(ak) = h(a). So h is not 1-1.

Isomorphism Test To show h : G  G’ is an isomorphism Show h is a homomorphism Show Ker(h) = {e} Show h is onto.

Normal Subgroups Definition: A subgroup H of a group G is said to be normal if a H = H a, for all a in G.

Kernel is Normal Theorem: Let h: G  G’ be a group homomorphism, then Ker(h) is normal: Proof: By previous theorem, a Ker(h) = Ker(h) a, for all a in G. By the previous definition, Ker(h) is normal.

HW Not to hand in: Hand in (due Thurs Nov 18) Page 133: 1, 3, 5, 7, 17, 19, 27, 29, 33, 35 Hand in (due Thurs Nov 18) Page 133: 44, 45, 49

Section 15 Section 15: Factor Groups Multiplication of cosets Definition: Factor Group Theorem: The image of a group homomorphism is isomorphic to the group modulo its kernel. Properties of normal subgroups Theorem: For a subgroup of a group, left coset multiplication is well-defined if and only if the subgroup is normal. Theorem: The canonical map is a homomorphism.

Multiplication of Cosets Let H be a subgroup of a group G. When is (a H) (b H) = a b H? This is true for abelian groups, but not always when G is nonabelian. Consider S3: Let H = {ρ0, μ1}. The left cosets are {ρ0, μ1}, {ρ1, μ3}, {ρ2, μ2}. If we multiply the first two together, then {ρ0, μ1}, {ρ1, μ3} = {ρ0 ρ1, ρ0 μ3, μ 1 ρ1, μ 1 μ3} = {ρ1, μ3, μ2, ρ 2} This has four distinct elements, not two!

Sometimes it does work. Consider S3: Let H = {ρ0, ρ1 , ρ2}. The left cosets are {ρ0, ρ1 , ρ2}, {μ1, μ2 , μ3} If we multiply the first two together, then {ρ0, ρ1 , ρ2} {μ1, μ2, μ3} = {ρ0 μ1, ρ0 μ2, ρ0 μ3, ρ1 μ1, ρ1 μ2, ρ1 μ3, ρ2 μ1, ρ2 μ2, ρ2 μ3} = {μ1, μ2, μ3, μ3, μ1, μ2, μ2, μ3, μ1} = {μ1, μ2, μ3} This is one of the cosets. Likewise, {ρ0, ρ1 , ρ2} {ρ0, ρ1 , ρ2} = {ρ0, ρ1 , ρ2} {μ1, μ2 , μ3}{ρ0, ρ1 , ρ2} = {μ1, μ2 , μ3} {μ1, μ2 , μ3 }{μ1, μ2 , μ3} = {ρ0, ρ1 , ρ2} Note that the cosets of {ρ0, ρ1 , ρ2} with this binary operation form a group isomorphic to ℤ2.

Canonical Homomorphism Note that there is a natural map from S3 from {{ρ0, ρ1 , ρ2}, {μ1, μ2 , μ3}} that takes any element to the coset that contains it. This gives a homomorphism called the cannonical homomorphism.

Theorem Theorem: Let h: G  G’ be a group homomorphism with kernel K. Then the cosets of K form a group with binary operation given by (a K)(b K) = (a b) K. This group is called the factor group G/K. Additionally, the map μ that takes any element x of G to is coset xH is a homomorphism. This is called the canonical homomorphism. Proof: Let (a K)(b K) = { a k1 b k2 | k1,k2 in K}. We show this is equal to (a b) K. Clearly, a b K  (a K)(b K) (just consider what happens when k1 = e) To prove the reverse apply h: h[(a K)(b K)] = { h(a k1 b k2 )| k1,k2 in K} But h(a k1 b k2)= h(a) h( k1) h(b) h(k2 ) = h(a) e’ h(b) e’= h(a) h(b) = h(a b) Then h[(a K)(b K)] = {h(a b)| k1,k2 in K}= {h(a b)} Thus (a K)(b K)  h-1[{h(a b)}] = a b K So (a K)(b K) = a b K.

Associativity of Coset Multiplication Proof continued: This operation is associative: ((a K) (b K)) (c K) = (a b K) (c K) = a b c K (a K)((b K) (c K)) = (a K) (b c K) = a b c K Thus ((a K) (b K)) (c K) = (a K)((b K) (c K))

Identity and Inverse Proof continued: The coset e K = K is an identity: (e K) (a K) = (e a) K = a K For each coset a K, the coset a-1 K is an inverse: (a-1 K) (a K) = (a-1 a) K = e K (a K) (a-1 K) = (a a-1) K = e K

Canonical Map Proof continued: Let μ(a) = a K. Then μ(a b) = a b K and μ(a) μ (b) = (a K)(b K) = a b K Thus μ(a b) = μ(a) μ (b)

Terminology Let H be a subroup of a group G. When the cosets satisfy the rule (a H) (b H) = ( a b) H We call the set of cosets the factor group and denote it by G/H. This is read G modulo H. Note that for finite groups order(G/H) = order(G)/order(H)

Coset Multiplication is equivalent to Normality Theorem: Let H be a subgroup of a group G. Then H is normal if and only if (a H )( b H) = (a b) H, for all a, b in G Proof: Suppose (a H )( b H) = (a b) H, for all a, b in G. We show that a H = H a, for all a in H. We do this by showing: a H  H a and H a  a H, for all a in G. a H  H a: First observe that a H a-1  (a H )( a-1 H) = (a a-1) H = H. Let x be in a H. Then x = a h, for some h in H. Then x a-1 = a h a-1, which is in = a H a-1 , thus in H. Thus x a-1 is in H. Thus x is in H a. H a  a H: H a  H a H = (e H )( a H) = (e a) H = a H. This establishes normality. For the converse, assume H is normal. (a H )( b H)  (a b) H: For a, b in G, x in (a H )( b H) implies that x = a h1 b h2, for some h1 and h2 in H. But h1 b is in H b, thus in b H. Thus h1 b = b h3 for some h3 in H. Thus x = a b h3 h2 is in a b H. (a b) H  (a H )( b H): x in (a b) H ⇒that x = a e b h, for some h in H. Thus x is in (a H) (b H).