MOS Inverters 1.

Slides:



Advertisements
Similar presentations
Elettronica T A.A Digital Integrated Circuits © Prentice Hall 2003 Inverter CMOS INVERTER.
Advertisements

Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. C H A P T E R 13 CMOS Digital Logic Circuits.
© Digital Integrated Circuits 2nd Inverter CMOS Inverter: Digital Workhorse  Best Figures of Merit in CMOS Family  Noise Immunity  Performance  Power/Buffer.
Fig Operation of the enhancement NMOS transistor as vDS is increased
Digital CMOS Logic Circuits
The CMOS Inverter Slides adapted from:
Digital Integrated Circuits© Prentice Hall 1995 Inverter THE INVERTERS.
Digital Integrated Circuits© Prentice Hall 1995 Inverter THE INVERTERS.
Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. C H A P T E R 14 Advanced MOS and Bipolar Logic Circuits.
1. Department of Electronics Engineering Sahand University of Technology NMOS inverter with an n-channel enhancement-mode mosfet with the gate connected.
THE INVERTERS. DIGITAL GATES Fundamental Parameters l Functionality l Reliability, Robustness l Area l Performance »Speed (delay) »Power Consumption »Energy.
Chapter 07 Electronic Analysis of CMOS Logic Gates
Inverter Chapter 5 The Inverter April 10, Inverter Objective of This Chapter  Use Inverter to know basic CMOS Circuits Operations  Watch for performance.
Digital Integrated Circuits A Design Perspective
Introduction to MicroElectronics
1. Digital cmos.2 10/15 Figure 10.1 Digital IC technologies and logic-circuit families. Digital IC Technologies CMOS & Pass Transistor Logic dominate.
Solid-State Devices & Circuits
Digital Logic Inverter Clasificacion de Circuitos y frecuencia maxima.
CMOS VLSI Design Lecture 4: DC & Transient Response Younglok Kim Sogang University Fall 2006.
Lecture 3 Static properties (VTC and noise margins)
Digital Integrated Circuits for Communication
Lecture 05: Static Behaviour of CMOS Inverter
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2003 Lecture 04: CMOS Inverter (static view) Mary Jane.
VLSI System Design DC & Transient Response
IV UNIT : GATE LEVEL DESIGN
The Inverter EE4271 VLSI Design Professor Shiyan Hu Office: EERC 518
DC Characteristics of a CMOS Inverter
DMT 241 – Introduction to IC Layout
VLSI Design CMOS Inverter UNIT II :BASIC ELECTRICAL PROPERTIES
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
EE141 Chapter 5 The Inverter April 10, 2003.
Electronic Circuits Laboratory EE462G Lab #6
CMOS Inverter First Glance
Digital CMOS Logic Circuits
Lecture 4 EGRE 254 1/26/09.
Digital Integrated Circuits A Design Perspective
Reading: Hambley Ch. 7; Rabaey et al. Sec. 5.2
Comparator What is a Comparator?
ترانزیستور MOSFET دکتر سعید شیری فصل چهارم از:
Chapter #13: CMOS Digital Logic Circuits
Lecture No. 7 Logic Gates Asalam O Aleikum students. I am Waseem Ikram. This is the seventh lecture in a series of 45 lectures on Digital Logic Design.
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2002 Lecture 04: CMOS Inverter (static view) Mary Jane.
Chapter 6 (II) Designing Combinational Logic Circuits (II)
Sedra/Smith Microelectronic Circuits 5/e
ENEE 303 7th Discussion.
DC & Transient Response
Basic electrical properties
Comparator What is a Comparator?
The Inverter EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 731
The Physical Structure (NMOS)
Introduction to CMOS VLSI Design Lecture 5: DC & Transient Response
Chapter 7 Complementary MOS (CMOS) Logic Design
Digital Integrated Circuits CMOS I: Static Characteristics
UNIT-II Stick Diagrams
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Chapter – 2 Logic Families.
The Inverter EE4271 VLSI Design Professor Shiyan Hu Office: EERC 518
The Inverter EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 731
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
MOS Transistors CMOS Inverter and Logic Families
Lecture 5: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response
Reading: Hambley Ch. 7; Rabaey et al. Secs. 5.2, 5.5, 6.2.1
The Inverter EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 518
Lecture #18 OUTLINE Reading Continue small signal analysis
Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.
Propagation Delay.
Presentation transcript:

MOS Inverters 1

Digital IC Technologies sedr42021_1001.jpg Figure 10.1 Digital IC technologies and logic-circuit families.

Typical Logic Inverter VTC VIH VOH VOL VIL sedr42021_1002.jpg Figure 10.2 Typical voltage transfer characteristic (VTC) of a logic inverter, illustrating the definition of the critical points.

Noise Margins-1 the higherVIL and the lowerVOL, the better VIH VOL VIL VOH VIH the lowerVIH and the higherVOH, the better VIL VOH VIH VOL VIL Microelectronic Circuits - Fifth Edition Sedra/Smith

Noise Margins-2 NMH=VOH-VIH NML=VIL -VOL sedr42021_1002.jpg Figure 10.2 Typical voltage transfer characteristic (VTC) of a logic inverter, illustrating the definition of the critical points.

Logic Inverters time parameters tr: input rise time tf: input fall time tPHL: H to L propagation time tPLH: L to H propagation time tTHL: output H to L transition time tTLH: output L to H transition time sedr42021_1003.jpg Figure 10.3 Definitions of propagation delays and switching times of the logic inverter.

CMOS Inverter sedr42021_1004.jpg Figure 10.4 (a) The CMOS inverter and (b) its representation as a pair of switches operated in a complementary fashion.

CMOS Inverter Static Analysis sedr42021_0453.jpg Figure 4.53 The CMOS inverter. Microelectronic Circuits - Fifth Edition Sedra/Smith

Complementary n and p transistors-1 IDP ~0 (cutoff) sedr42021_0454a.jpg Figure 4.54 Operation of the CMOS inverter when vI is high: (a) circuit with vI = VDD (logic-1 level, or VOH); (b) graphical construction to determine the operating point; (c) equivalent circuit. Microelectronic Circuits - Fifth Edition Sedra/Smith

Complementary n and p transistors-2 sedr42021_0455a.jpg IDN~0 (cutoff) Figure 4.55 Operation of the CMOS inverter when vI is low: (a) circuit with vI = 0 V (logic-0 level, or VOL); (b) graphical construction to determine the operating point; (c) equivalent circuit. Microelectronic Circuits - Fifth Edition Sedra/Smith

pMOS load lines VGSp=-VSGp VDSp IDp =- IDSp IDn = IDSn VGSn VDSn V I V DD +V GSp DSn = - I DSp O IDn = IDSn VGSn VDSn V DSp I GSp =-2.5 =-1 V DSp I DSn =0 =1.5 V O I Dn =0 =1.5 V I = V DD +V GSp DSn = - I DSp V O = V DD +V DSp

CMOS Inverter Load Characteristics DD

Transistors operating regions sedr42021_0456.jpg to use VM instead of Vth Do not confuse with threshold voltage Figure 4.56 The voltage transfer characteristic of the CMOS inverter. Microelectronic Circuits - Fifth Edition Sedra/Smith

Current Behavior sedr42021_0458.jpg Figure 4.58 The current in the CMOS inverter versus the input voltage. Microelectronic Circuits - Fifth Edition Sedra/Smith

CMOS Inverter Noise Margins NMH =VOH-VIH =VDD-VIH NML=VIL -VOL =VIL -0 Very high margins !! sedr42021_1005.jpg Figure 10.5 The voltage transfer characteristic (VTC) of the CMOS inverter when QN and QP are matched.

CMOS Inverter Noise Margins sedr42021_1005.jpg when Vtp= -Vtn Equal Noise Margins: VM Figure 10.5 The voltage transfer characteristic (VTC) of the CMOS inverter when QN and QP are matched.

CMOS Inverter Dynamic Analysis-1 VGSn(t=0+)n=VDD VDSn(t=0+)n=VDD VGSn(t=0-)=0V VDSn(t=0-)=VDD sedr42021_0457a.jpg Figure 4.57 Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms; (c) trajectory of the operating point as the input goes high and C discharges through QN; (d) equivalent circuit during the capacitor discharge. tPHLor tPLH refer to the output Microelectronic Circuits - Fifth Edition Sedra/Smith

CMOS Inverter Dynamic Analysis-2 By using iD= -C.(dvO/dt), and integrating it, an approximate solution can be reached (assuming the simplifying condition VTH=0,2XVDD): tPHL = 1,6.C/[kn.VDD ] = 1,6.C/[kn´.(W/L)n.VDD ] tPLH = 1,6.C/[kp.VDD ] = 1,6.C/[kp´.(W/L)p.VDD ] Obs. It is more important understand the dependences

Discharge and Charge sedr42021_1007a.jpg Figure 10.7 Equivalent circuits for determining the propagation delays (a) tPHL and (b) tPLH of the inverter.

CMOS Inverter Dynamic Analysis-3 Alternative form by average current, from t=0 to tPHL (or tPHL) tPHL= C.DV/IDn|aver = C. (VDD /2)/IDn|aver , where IDn|aver= [IDn(0)+ IDn(tPHL)]/2 t=0 (saturation): IDn(0)= kn.(VDD - VTH)2/2 t= tPHL (linear): IDn(tPHL)= kn.[(VDD - VTH)(VDD /2)- (VDD /2)2 /2] Obs. tpLH can be obtained similarly

Cascaded Inverters Capacitances- 1 sedr42021_1006.jpg Figure 10.6 Circuit for analyzing the propagation delay of the inverter formed by Q1 and Q2, which is driving an identical inverter formed by Q3 and Q4.

Cascaded Inverters Capacitances- 2 Polysilicon In Out Metal1 V DD GND PMOS NMOS 1.2 m =2l

Cascaded Inverters Capacitances- 3 sedr42021_1006.jpg 23

Cascaded Inverters Capacitances- 4 Bottom and Side-wall sedr42021_1006.jpg 24

Cascaded Inverters Capacitances- 5 Bottom and Side-wall sedr42021_1006.jpg 25

Cascaded Inverters Capacitances- 6 CGDO sedr42021_1006.jpg 26

Cascaded Inverters Capacitances- 7 CGDO and COX sedr42021_1006.jpg 27

Power Consumption Direct-path Power Dynamic Power Vin IC Vout ID C Vin L Vdd IC ID Direct-path Power Dynamic Power Vin Vout C L Vdd IC ID

Dynamic Power Dynamic Power >> Direct-path Power Pdyn= f.CL.VDD2  switching activity is critical Edyn= CL.VDD2  Energy required to charge and discharge CL