Progress on the Linac and RLAs

Slides:



Advertisements
Similar presentations
MCDW 2008, JLAB, Dec 8-12, Multi-pass Droplet Arc Design Guimei WANG (Muons Inc./ODU) Dejan Trbojevic (BNL) Alex Bogacz (JLAB)
Advertisements

Bunched-Beam Phase Rotation- Variation and 0ptimization David Neuffer, A. Poklonskiy Fermilab.
FFAG Concepts and Studies David Neuffer Fermilab.
ABSTRACT The International Design Study for the Neutrino Factory (IDS- NF) baseline design 1 involves a complex chain of accelerators including a single-pass.
, WP1 Meeting, RAL J. Pasternak Status and Recent Progress in the Muon FFAG Designs for the NF J. Pasternak, Imperial College, London / RAL STFC.
Ajit Kurup, C. Bontoiu, M. Aslaninejad, J. Pozimski, Imperial College London. A.Bogacz, V. S. Morozov, Y.R. Roblin Jefferson Laboratory K. B. Beard, Muons,
Operated by JSA for the U.S. Department of Energy Muons, Inc. Winter MAP Mtg, Mar. 2 nd, 2011 Pre-Linac simulations in G4beamline Kevin B. Beard Muons,Inc.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
1 EPIC SIMULATIONS V.S. Morozov, Y.S. Derbenev Thomas Jefferson National Accelerator Facility A. Afanasev Hampton University R.P. Johnson Muons, Inc. Operated.
ELIC Low Beta Optics with Chromatic Corrections Hisham Kamal Sayed 1,2 Alex Bogacz 1 1 Jefferson Lab 2 Old Dominion University.
Acceleration System Comparisons S. Machida ASTeC/RAL September, 2005, ISS meeting at CERN.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Dogbone RLA – Design.
Harold G. Kirk Brookhaven National Laboratory Progress in Quad Ring Coolers Ring Cooler Workshop UCLA March 7-8, 2002.
Recent Progress Toward a Muon Recirculating Linear Accelerator S.A.Bogacz, V.S.Morozov, Y.R.Roblin 1, K.B.Beard 2, A. Kurup, M. Aslaninejad, C. Bonţoiu,
Optics considerations for ERL test facilities Bruno Muratori ASTeC Daresbury Laboratory (M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Muon Collider Design Workshop, BNL, December 1-3, 2009.
WP3: The Neutrino Factory Costing Status Ajit Kurup CERN Costing Workshop 8 th December 2011.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz Status and Plans for Linac and RLAs.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Status of Baseline Linac and RLAs Design.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Muon Acceleration – RLA, FFAG and Fast Ramping.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Y. R. Roblin, NUFACT 2012, July JEMMRLA Jefferson.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Acceleration in.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Acceleration.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Recirculating Linac Acceleration  End-to-end.
EUROnu Review: 14 th April 2011 Summary of WP3 J. Pozimski.
Research and development toward a future Muon Collider Katsuya Yonehara Accelerator Physics Center, Fermilab On behalf of Muon Accelerator Program Draft.
Preservation of Magnetized Beam Quality in a Non-Isochronous Bend
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Alex.
Muons, Inc. Modeling the Upper, Middle, & Lower NF linac in G4beamline Kevin B. Beard, Muons,Inc. & Alex Bogacz, Jefferson Lab LEMC2009 workshop 8-12 Jun.
Progress on the Linac and RLAs
JLEIC simulations status April 3rd, 2017
Parametric Resonance Ionization Cooling of Muons
PERLE - Current Accelerator Design
Large Booster and Collider Ring
Modeling the Upper, Middle, & Lower
Modeling the Upper, Middle, & Lower
‘Multi-pass-Droplet’ Experiment
Upper Linac Update LEMC2009 workshop 8-12 Jun 2009 K.B.Beard
Modeling the Upper, Middle, & Lower
Status of Linac and RLAs – Simulations
Muon RLA - Design Status and Simulations
12 GeV CEBAF.
Muon RLA - Design Status and New Options
Linac and RLAs – Overview of NF-IDS
Electron Ring Optics Design
K.B. Beard1#, S.A. Bogacz2, V.S. Morozov2, Y.R. Roblin2
Progress on the Linac and RLAs
Collider Ring Optics & Related Issues
Morteza Aslaninejad Cristian Bontoiu Juergen Pozimski
RLA WITH NON-SCALING FFAG ARCS
Pre-Linac simulations in G4beamline Alex Bogacz & Yves Roblin
Optics and Layout of Alex Bogacz Workshop, Orsay, Feb. 23, 2017.
Accelerator and Interaction Region
Betatron Motion with Coupling of Horizontal and Vertical Degrees of Freedom – Part II Alex Bogacz USPAS, Hampton, VA, Jan , 2011.
S.A. Bogacz, G.A. Krafft, S. DeSilva and R. Gamage
Muon RLA - Design Status and New Options
– Overview Alex Bogacz JLAB, Aug. 14, 2017.
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Muon RLA - Design Status and Simulations
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Progress Update on the Electron Polarization Study in the JLEIC
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Status of IR / Nonlinear Dynamics Studies
Booster to Ion Ring Transfer Line
Large Ion Booster Re-design Update
Report on Electron Polarization Study
PERLE - Current Accelerator Design
Presentation transcript:

Progress on the Linac and RLAs Alex Bogacz, Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. Morteza Aslaninejad, Cristian Bontoiu, Jürgen Pozimski Imperial College

Linac and RLAs – ‘Big picture’ 1st part of this talk 0.6 GeV/pass 3.6 GeV 0.9 GeV 244 MeV 146 m 79 m 2 GeV/pass 264 m 12.6 GeV 2nd part of this talk IDS Goals: Define beamlines/lattices for all components Resolve physical interferences, beamline crossings etc Error sensitivity analysis End-to-end simulation (machine acceptance) Component count and costing EUROnu Jan. 2011

RLA Lattice Studies - Status Presently completed lattices Linear pre-accelerator – solenoid focusing 4.5 pass Dogbone RLA × 2 (RLA I + RLA II) Optimized multi-pass linac optics (bisected - quad profile along the linac) Droplet return arcs (4) matched to the linacs Transfer lines between the components – injection chicanes Droplet arcs crossing – Double achromat Optics design Chromatic corrections with sextupoles at Spr/Rec junctions Error analysis for the Arc lattices (proof-or-principle) Magnet misalignment tolerance – DIMAD Monte Carlo Simulation Focusing errors tolerance – betatron mismatch sensitivity Piece-wise end-to-end simulation with OptiM (pre-accelerator + RLA I) EUROnu Jan. 2011

Muon Acceleration Mini-workshop Feb 2-5, 2010 http://casa.jlab.org/external/2010/MuonAcceleration_MiniWorkshop/

Solenoid Linac (244 -909 MeV) 6 short cryos 15 MV/m 8 medium cryos 17 MV/m 11 long cryos 1.1 Tesla solenoid 1.4 Tesla solenoid 2.4 Tesla solenoid Transverse acceptance (normalized): (2.5)2eN = 30 mm rad Longitudinal acceptance: (2.5)2 sDpsz/mmc = 150 mm 146 Sat Dec 13 22:36:02 2008 OptiM - MAIN: - D:\IDS\PreLinac\Sol\Linac_sol.opt 12 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y EUROnu Jan. 2011

Linac – tracking studies DONE SO FAR: shielded two-shell solenoid modeled with POISSON RF cavities modeled with SUPERFISH, COMSOL, & CST front-to-end lattice for OptiM (solenoids, dipoles, quadrupoles, & sextupoles) linac lattice tested in MAD-X beam tracking using GPT optical match of linac to cooling channel with one solenoid beam-loading effects evaluated as negligible standard for exchanging data files proposed EUROnu Jan. 2011

Solenoid Model (Superfish) outer coil shield inner coil ‘Soft-edge’ Solenoid EUROnu Jan. 2011

Two-cell cavity (201 MHz) – COMSOL Morteza Aslaninejad Cristian Bontoiu Jürgen Pozimski EUROnu Jan. 2011

Initial phase-space after the cooling channel at 220 MeV/c Linac-RLA Acceptance Initial phase-space after the cooling channel at 220 MeV/c bx,y = 2.74 m ax,y = -0.356 bg = 2.08 EUROnu Jan. 2011

Linac Optics – Beam envelopes EUROnu Jan. 2011 146 Thu Apr 08 13:54:52 2010 OptiM - MAIN: - C:\Working\IDS\PreLinac\Linac_sol.opt 30 Size_X[cm] Size_Y[cm] Ax_bet Ay_bet Ax_disp Ay_disp Transverse acceptance (normalized): (2.5)2eN = 30 mm rad Longitudinal acceptance: (2.5)2 sDpsz/mmc = 150 mm

Linac Optics – OptiM vs ELEGANT 146 Sat Dec 13 22:36:02 2008 OptiM - MAIN: - D:\IDS\PreLinac\Sol\Linac_sol.opt 12 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y a = 19.5 cm a = 19.5 cm Yves Roblin EUROnu Jan. 2011

Longitudinal phase-space tracking MATHCAD OptiM Initial distribution Kevin Beard Alex Bogacz ELEGANT MATLAB Yves Roblin Morteza Aslaninejad EUROnu Jan. 2011

Cooling Channel – Linac Optics b B|| a EUROnu Jan. 2011

GPT Particle Tracking in the Linac cooling -> upper linac upper -> middle linac EUROnu Jan. 2011

Linac and RLAs - ‘field map’ tracking TO DO NEXT: Include cavity filling effect on accelaration Get a more accurate initial distribution Design an improved cooling-to-linac section Upgrade analytic cavity phasing – check against GPT Complete linac lattice via tuning solenoids, phasing cavities, & tracking with GPT EUROnu Jan. 2011

Linac-to-Arc – Chromatic Compensation E =1.8 GeV 36.9103 Wed Jun 11 13:14:37 2008 OptiM - MAIN: - D:\IDS\Linacs_short\Linac1_fudg.opt 15 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 72 Wed Jun 11 14:08:34 2008 OptiM - MAIN: - D:\IDS\Arcs\Arc2_match.opt ‘Matching quads’ are invoked No 900 phase adv/cell maintained across the ‘junction’ Chromatic corrections needed – two pairs of sextupoles EUROnu Jan. 2011

Linac-to-Arc - Chromatic Corrections initial uncorrected two families of sextupoles EUROnu Jan. 2011

Mirror-symmetric ‘Droplet’ Arc – Optics 130 Tue Jun 10 21:14:41 2008 OptiM - MAIN: - D:\IDS\Arcs\Arc1.opt 15 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y E =1.2 GeV (bout = bin and aout = -ain , matched to the linacs) 2 cells out transition 2 cells out 10 cells in transition EUROnu Jan. 2011

Multi-pass FFAG Arc Basic cell EUROnu Jan. 2011 Multi-pass FFAG Arc 2 or more passes through the same arc e.g. 5 GeV and 9 GeV NS-FFAG arc lattice design Achromatic basic cell with 90 horizontal phase advance Automatic matching between inward and outward bending cells Linear optics understood Need to incorporate sextupole and higher-order field components to accommodate higher momenta Basic cell example trajectories dispersion Vasiliy Morozov COSY Infinity IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Multi-pass FFAG Arc 300 60 simple closing of geometry EUROnu Jan. 2011 Multi-pass FFAG Arc Vasiliy Morozov simple closing of geometry when using similar cells r = 38.5 meters 300 60 C = 302 meters IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Proposed SDDS Exchange Format http://casa.jlab.org/external/2010/MuonAcceleration_MiniWorkshop/SDDS/draft.html ZGOUBI ELEGANT G4beamline ICOOL OptiM COSY-Infinity MAD-X GPT … Kevin Beard EUROnu Jan. 2011

Summary Critical components of front-end linac modeled Initial design of the front-end linac simulated Design matching sections simulated RLA arc lattice + chromaticity compensation simulated Putting the pieces together for end-to-end simulations Multi-pass (2) FFAG Arcs? EUROnu Jan. 2011

Alex Bogacz, V.Morozov, Y.Roblin Recent Progress on the Linac and RLAs Recent Progress on the Linac and RLAs Kevin B. Beard, Muons,Inc. & Alex Bogacz, V.Morozov, Y.Roblin Jefferson Lab LEMC2009 workshop 8-12 Jun 2009

244 MeV 0.9 GeV 0.6 GeV/pass 3.6 GeV 12.6 GeV 2 GeV/pass Recent Progress on the Linac and RLAs 0.6 GeV/pass 3.6 GeV 0.9 GeV 244 MeV 146 m 79 m 2 GeV/pass 264 m 12.6 GeV LEMC2009 workshop 8-12 Jun 2009

Linear Pre-accelerator – 244 MeV to 909 MeV 6 short cryos 15 MV/m 8 medium cryos 17 MV/m 11 long cryos 1.1 Tesla solenoid 1.4 Tesla solenoid 2.4 Tesla solenoid Transverse acceptance (normalized): (2.5)2= 30 mm rad Longitudinal acceptance: (2.5)2 pz/mc= 150 mm 8m 3m 5m Mini-workshop on Low Energy Muon Acceleration, CNU, February 2-5 , 2010

Why another simulation? OptiM – fast, interactive, design, matrix based 0th order design tool, symplectic soft edge solenoids, very good at tuning (free) GPT – good at tracking ($) G4beamline – tracking, Geant4 particle decays & interactions, energy depositions, showers, etc., not so good at tuning (free & open source) (v2.06) http://g4beamline.muonsinc.com LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010

LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010

G4beamline input file z18.in ... # The "default" physics list is QGSP_BERT physics QGSP_BERT disable=Decay ###################### begin: common info ################################# # physical constants: param deg=3.14159/180. param muonmass=105.658 param c_mm_nS=299.792 upperCryomodule $Zcryo1 $j1 $Toff1 $kill1 upperCryomodule $Zcryo2 $j2 $Toff2 $kill2 upperCryomodule $Zcryo3 $j3 $Toff3 $kill3 upperCryomodule $Zcryo4 $j4 $Toff4 $kill4 upperCryomodule $Zcryo5 $j5 $Toff5 $kill5 upperCryomodule $Zcryo6 $j6 $Toff6 $kill6 middleCryomodule $Zcryo7 $j7 $Toff7 $kill7 middleCryomodule $Zcryo8 $j8 $Toff8 $kill8 middleCryomodule $Zcryo9 $j9 $Toff9 $kill9 middleCryomodule $Zcryo10 $j10 $Toff10 $kill10 middleCryomodule $Zcryo11 $j11 $Toff11 $kill11 middleCryomodule $Zcryo12 $j12 $Toff12 $kill12 middleCryomodule $Zcryo13 $j13 $Toff13 $kill13 middleCryomodule $Zcryo14 $j14 $Toff14 $kill14 lowerCryomodule $Zcryo15 $j15 $Toff15a $Toff15b $kill15 lowerCryomodule $Zcryo16 $j16 $Toff16a $Toff16b $kill16 lowerCryomodule $Zcryo17 $j17 $Toff17a $Toff17b $kill17 lowerCryomodule $Zcryo18 $j18 $Toff18a $Toff18b $kill18 lowerCryomodule $Zcryo19 $j19 $Toff19a $Toff19b $kill19 lowerCryomodule $Zcryo20 $j20 $Toff20a $Toff20b $kill20 lowerCryomodule $Zcryo21 $j21 $Toff21a $Toff21b $kill21 solenoid RF timing center Only 534 non-comment lines, produces 244 virtual detectors, 25 cryomodules beam stop LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

Conclusions G4beamline model is working well and in general agreement with other simulations Essential step toward our long term goal of complete end-to-end simulations Fine tuning is still in progress Will soon begin particle interactions with the hardware LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

Ez Ez LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010 Muons, Inc.

phases partially adjusted phases from spreadsheet LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010

Comparison of GPT, OptiM, g4beamline KE[MeV] z[cm] G4beamline w/adj. φ's OptiM G4beamline w/OptiM's φ's KE[MeV] LEMC2009 workshop 8-12 Jun 2009 z[cm] Muons, Inc. MAG, Jun 14, 2010

Every 3rd solenoid (adjusted from oncrest) 800 ET [MeV] 22nS t[nS] LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

GPT G4beamline y[m] LEMC2009 workshop 8-12 Jun 2009 z[m] z[m] Sep 14, 2010 Muons, Inc.

lost LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010

those that made it to the end in G4beamline input t,Pz for acceptance OptiM generated input LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

Fine tuning is still in progress Synchrotron motion Pz ~ oncrest ~ 1 synch period LEMC2009 workshop 8-12 Jun 2009 t t Sep 14, 2010 G4beamline model is working well and in general agreement with other simulations Essential step toward our long term goal of complete end-to-end simulations Fine tuning is still in progress Will soon begin particle interactions with the hardware

∘RF ~ oncrest ~ 1 synch period #m LEMC2009 workshop 8-12 Jun 2009 z[m] Sep 14, 2010 z[m] Muons, Inc.

LEMC2009 workshop 8-12 Jun 2009