Progress on the Linac and RLAs Alex Bogacz, Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. Morteza Aslaninejad, Cristian Bontoiu, Jürgen Pozimski Imperial College
Linac and RLAs – ‘Big picture’ 1st part of this talk 0.6 GeV/pass 3.6 GeV 0.9 GeV 244 MeV 146 m 79 m 2 GeV/pass 264 m 12.6 GeV 2nd part of this talk IDS Goals: Define beamlines/lattices for all components Resolve physical interferences, beamline crossings etc Error sensitivity analysis End-to-end simulation (machine acceptance) Component count and costing EUROnu Jan. 2011
RLA Lattice Studies - Status Presently completed lattices Linear pre-accelerator – solenoid focusing 4.5 pass Dogbone RLA × 2 (RLA I + RLA II) Optimized multi-pass linac optics (bisected - quad profile along the linac) Droplet return arcs (4) matched to the linacs Transfer lines between the components – injection chicanes Droplet arcs crossing – Double achromat Optics design Chromatic corrections with sextupoles at Spr/Rec junctions Error analysis for the Arc lattices (proof-or-principle) Magnet misalignment tolerance – DIMAD Monte Carlo Simulation Focusing errors tolerance – betatron mismatch sensitivity Piece-wise end-to-end simulation with OptiM (pre-accelerator + RLA I) EUROnu Jan. 2011
Muon Acceleration Mini-workshop Feb 2-5, 2010 http://casa.jlab.org/external/2010/MuonAcceleration_MiniWorkshop/
Solenoid Linac (244 -909 MeV) 6 short cryos 15 MV/m 8 medium cryos 17 MV/m 11 long cryos 1.1 Tesla solenoid 1.4 Tesla solenoid 2.4 Tesla solenoid Transverse acceptance (normalized): (2.5)2eN = 30 mm rad Longitudinal acceptance: (2.5)2 sDpsz/mmc = 150 mm 146 Sat Dec 13 22:36:02 2008 OptiM - MAIN: - D:\IDS\PreLinac\Sol\Linac_sol.opt 12 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y EUROnu Jan. 2011
Linac – tracking studies DONE SO FAR: shielded two-shell solenoid modeled with POISSON RF cavities modeled with SUPERFISH, COMSOL, & CST front-to-end lattice for OptiM (solenoids, dipoles, quadrupoles, & sextupoles) linac lattice tested in MAD-X beam tracking using GPT optical match of linac to cooling channel with one solenoid beam-loading effects evaluated as negligible standard for exchanging data files proposed EUROnu Jan. 2011
Solenoid Model (Superfish) outer coil shield inner coil ‘Soft-edge’ Solenoid EUROnu Jan. 2011
Two-cell cavity (201 MHz) – COMSOL Morteza Aslaninejad Cristian Bontoiu Jürgen Pozimski EUROnu Jan. 2011
Initial phase-space after the cooling channel at 220 MeV/c Linac-RLA Acceptance Initial phase-space after the cooling channel at 220 MeV/c bx,y = 2.74 m ax,y = -0.356 bg = 2.08 EUROnu Jan. 2011
Linac Optics – Beam envelopes EUROnu Jan. 2011 146 Thu Apr 08 13:54:52 2010 OptiM - MAIN: - C:\Working\IDS\PreLinac\Linac_sol.opt 30 Size_X[cm] Size_Y[cm] Ax_bet Ay_bet Ax_disp Ay_disp Transverse acceptance (normalized): (2.5)2eN = 30 mm rad Longitudinal acceptance: (2.5)2 sDpsz/mmc = 150 mm
Linac Optics – OptiM vs ELEGANT 146 Sat Dec 13 22:36:02 2008 OptiM - MAIN: - D:\IDS\PreLinac\Sol\Linac_sol.opt 12 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y a = 19.5 cm a = 19.5 cm Yves Roblin EUROnu Jan. 2011
Longitudinal phase-space tracking MATHCAD OptiM Initial distribution Kevin Beard Alex Bogacz ELEGANT MATLAB Yves Roblin Morteza Aslaninejad EUROnu Jan. 2011
Cooling Channel – Linac Optics b B|| a EUROnu Jan. 2011
GPT Particle Tracking in the Linac cooling -> upper linac upper -> middle linac EUROnu Jan. 2011
Linac and RLAs - ‘field map’ tracking TO DO NEXT: Include cavity filling effect on accelaration Get a more accurate initial distribution Design an improved cooling-to-linac section Upgrade analytic cavity phasing – check against GPT Complete linac lattice via tuning solenoids, phasing cavities, & tracking with GPT EUROnu Jan. 2011
Linac-to-Arc – Chromatic Compensation E =1.8 GeV 36.9103 Wed Jun 11 13:14:37 2008 OptiM - MAIN: - D:\IDS\Linacs_short\Linac1_fudg.opt 15 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 72 Wed Jun 11 14:08:34 2008 OptiM - MAIN: - D:\IDS\Arcs\Arc2_match.opt ‘Matching quads’ are invoked No 900 phase adv/cell maintained across the ‘junction’ Chromatic corrections needed – two pairs of sextupoles EUROnu Jan. 2011
Linac-to-Arc - Chromatic Corrections initial uncorrected two families of sextupoles EUROnu Jan. 2011
Mirror-symmetric ‘Droplet’ Arc – Optics 130 Tue Jun 10 21:14:41 2008 OptiM - MAIN: - D:\IDS\Arcs\Arc1.opt 15 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y E =1.2 GeV (bout = bin and aout = -ain , matched to the linacs) 2 cells out transition 2 cells out 10 cells in transition EUROnu Jan. 2011
Multi-pass FFAG Arc Basic cell EUROnu Jan. 2011 Multi-pass FFAG Arc 2 or more passes through the same arc e.g. 5 GeV and 9 GeV NS-FFAG arc lattice design Achromatic basic cell with 90 horizontal phase advance Automatic matching between inward and outward bending cells Linear optics understood Need to incorporate sextupole and higher-order field components to accommodate higher momenta Basic cell example trajectories dispersion Vasiliy Morozov COSY Infinity IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010
Multi-pass FFAG Arc 300 60 simple closing of geometry EUROnu Jan. 2011 Multi-pass FFAG Arc Vasiliy Morozov simple closing of geometry when using similar cells r = 38.5 meters 300 60 C = 302 meters IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010
Proposed SDDS Exchange Format http://casa.jlab.org/external/2010/MuonAcceleration_MiniWorkshop/SDDS/draft.html ZGOUBI ELEGANT G4beamline ICOOL OptiM COSY-Infinity MAD-X GPT … Kevin Beard EUROnu Jan. 2011
Summary Critical components of front-end linac modeled Initial design of the front-end linac simulated Design matching sections simulated RLA arc lattice + chromaticity compensation simulated Putting the pieces together for end-to-end simulations Multi-pass (2) FFAG Arcs? EUROnu Jan. 2011
Alex Bogacz, V.Morozov, Y.Roblin Recent Progress on the Linac and RLAs Recent Progress on the Linac and RLAs Kevin B. Beard, Muons,Inc. & Alex Bogacz, V.Morozov, Y.Roblin Jefferson Lab LEMC2009 workshop 8-12 Jun 2009
244 MeV 0.9 GeV 0.6 GeV/pass 3.6 GeV 12.6 GeV 2 GeV/pass Recent Progress on the Linac and RLAs 0.6 GeV/pass 3.6 GeV 0.9 GeV 244 MeV 146 m 79 m 2 GeV/pass 264 m 12.6 GeV LEMC2009 workshop 8-12 Jun 2009
Linear Pre-accelerator – 244 MeV to 909 MeV 6 short cryos 15 MV/m 8 medium cryos 17 MV/m 11 long cryos 1.1 Tesla solenoid 1.4 Tesla solenoid 2.4 Tesla solenoid Transverse acceptance (normalized): (2.5)2= 30 mm rad Longitudinal acceptance: (2.5)2 pz/mc= 150 mm 8m 3m 5m Mini-workshop on Low Energy Muon Acceleration, CNU, February 2-5 , 2010
Why another simulation? OptiM – fast, interactive, design, matrix based 0th order design tool, symplectic soft edge solenoids, very good at tuning (free) GPT – good at tracking ($) G4beamline – tracking, Geant4 particle decays & interactions, energy depositions, showers, etc., not so good at tuning (free & open source) (v2.06) http://g4beamline.muonsinc.com LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010
LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010
G4beamline input file z18.in ... # The "default" physics list is QGSP_BERT physics QGSP_BERT disable=Decay ###################### begin: common info ################################# # physical constants: param deg=3.14159/180. param muonmass=105.658 param c_mm_nS=299.792 upperCryomodule $Zcryo1 $j1 $Toff1 $kill1 upperCryomodule $Zcryo2 $j2 $Toff2 $kill2 upperCryomodule $Zcryo3 $j3 $Toff3 $kill3 upperCryomodule $Zcryo4 $j4 $Toff4 $kill4 upperCryomodule $Zcryo5 $j5 $Toff5 $kill5 upperCryomodule $Zcryo6 $j6 $Toff6 $kill6 middleCryomodule $Zcryo7 $j7 $Toff7 $kill7 middleCryomodule $Zcryo8 $j8 $Toff8 $kill8 middleCryomodule $Zcryo9 $j9 $Toff9 $kill9 middleCryomodule $Zcryo10 $j10 $Toff10 $kill10 middleCryomodule $Zcryo11 $j11 $Toff11 $kill11 middleCryomodule $Zcryo12 $j12 $Toff12 $kill12 middleCryomodule $Zcryo13 $j13 $Toff13 $kill13 middleCryomodule $Zcryo14 $j14 $Toff14 $kill14 lowerCryomodule $Zcryo15 $j15 $Toff15a $Toff15b $kill15 lowerCryomodule $Zcryo16 $j16 $Toff16a $Toff16b $kill16 lowerCryomodule $Zcryo17 $j17 $Toff17a $Toff17b $kill17 lowerCryomodule $Zcryo18 $j18 $Toff18a $Toff18b $kill18 lowerCryomodule $Zcryo19 $j19 $Toff19a $Toff19b $kill19 lowerCryomodule $Zcryo20 $j20 $Toff20a $Toff20b $kill20 lowerCryomodule $Zcryo21 $j21 $Toff21a $Toff21b $kill21 solenoid RF timing center Only 534 non-comment lines, produces 244 virtual detectors, 25 cryomodules beam stop LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.
Conclusions G4beamline model is working well and in general agreement with other simulations Essential step toward our long term goal of complete end-to-end simulations Fine tuning is still in progress Will soon begin particle interactions with the hardware LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.
Ez Ez LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010 Muons, Inc.
phases partially adjusted phases from spreadsheet LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010
Comparison of GPT, OptiM, g4beamline KE[MeV] z[cm] G4beamline w/adj. φ's OptiM G4beamline w/OptiM's φ's KE[MeV] LEMC2009 workshop 8-12 Jun 2009 z[cm] Muons, Inc. MAG, Jun 14, 2010
Every 3rd solenoid (adjusted from oncrest) 800 ET [MeV] 22nS t[nS] LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.
GPT G4beamline y[m] LEMC2009 workshop 8-12 Jun 2009 z[m] z[m] Sep 14, 2010 Muons, Inc.
lost LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010
those that made it to the end in G4beamline input t,Pz for acceptance OptiM generated input LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.
Fine tuning is still in progress Synchrotron motion Pz ~ oncrest ~ 1 synch period LEMC2009 workshop 8-12 Jun 2009 t t Sep 14, 2010 G4beamline model is working well and in general agreement with other simulations Essential step toward our long term goal of complete end-to-end simulations Fine tuning is still in progress Will soon begin particle interactions with the hardware
∘RF ~ oncrest ~ 1 synch period #m LEMC2009 workshop 8-12 Jun 2009 z[m] Sep 14, 2010 z[m] Muons, Inc.
LEMC2009 workshop 8-12 Jun 2009