Session 4 INST 346 Technologies, Infrastructure and Architecture

Slides:



Advertisements
Similar presentations
HTTP Cookies. CPSC Application Layer 2 User-server state: cookies Many major Web sites use cookies Four components: 1) cookie header line of HTTP.
Advertisements

Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
1 Electronic Mail u Three major components: u user agents u mail servers u simple mail transfer protocol: SMTP u User Agent u a.k.a. “mail reader” u composing,
HyperText Transfer Protocol (HTTP)
Application Layer  We will learn about protocols by examining popular application-level protocols  HTTP  FTP  SMTP / POP3 / IMAP  Focus on client-server.
HyperText Transfer Protocol (HTTP) Computer Networks Computer Networks Spring 2012 Spring 2012.
CPSC 441: FTP & SMTP1 Application Layer: FTP & Instructor: Carey Williamson Office: ICT Class.
Chapter 2: Application layer  2.1 Web and HTTP  2.2 FTP 2-1 Lecture 5 Application Layer.
Electronic Mail and SMTP
Web, HTTP and Web Caching
Application Layer  We will learn about protocols by examining popular application-level protocols  HTTP  FTP  SMTP / POP3 / IMAP  Focus on client-server.
Application Layer  We will learn about protocols by examining popular application-level protocols  HTTP  FTP  SMTP / POP3 / IMAP  Focus on client-server.
Esimerkki: Sähköposti. Lappeenranta University of Technology / JP, PH, AH Electronic Mail Three major components: user agents mail servers simple mail.
Simple Mail Transfer Protocol
Introduction 1 Lecture 7 Application Layer (FTP, ) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
Mail Server Fitri Setyorini. Content SMTP POP3 How mail server works IMAP.
Introduction 1-1 Chapter 2 FTP & Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 IC322 Fall.
2: Application Layer1 Chapter 2 Application Layer These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
SMTP, POP3, IMAP.
1 Application Layer Lecture 5 Imran Ahmed University of Management & Technology.
Trying out HTTP (client side) for yourself
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 9
CSE401N: Computer Networks Lecture-5 Electronic Mail S. M. Hasibul Haque Lecturer Dept. of CSE, BUET.
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 2: Application.
Communications and Networks Lecture 5 Instructor: Rina Zviel-Girshin.
Review: –How do we address “a network end-point”? –What services are provided by the Internet? –What is the network logical topology observed by a network.
Application Layer Protocols Simple Mail Transfer Protocol.
2: Application Layer1 Reminder r Homework 1 for Wednesday: m Problems #3-5,11,16,18-20 m Half of the problems will be graded r Feel free to send me .
FTP (File Transfer Protocol) & Telnet
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Application Layer 2 Figures from Kurose and Ross
20-1 Last time □ NAT □ Application layer ♦ Intro ♦ Web / HTTP.
Week 11: Application Layer1 Web and HTTP First some jargon r Web page consists of objects r Object can be HTML file, JPEG image, Java applet, audio file,…
Introduction 1 Lecture 6 Application Layer (HTTP) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
2: Application Layer1 Web and HTTP First some jargon Web page consists of base HTML-file which includes several referenced objects Object can be HTML file,
2: Application Layer1 Chapter 2 Application Layer Part 2: Web & HTTP These slides derived from Computer Networking: A Top Down Approach, 6 th edition.
File Transfer Protocol (FTP)
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 8 Omar Meqdadi Department of Computer Science and Software Engineering University of.
Application Layer 2-1 Chapter 2 Application Layer 2.2 Web and HTTP.
CS 3830 Day 9 Introduction 1-1. Announcements r Quiz #2 this Friday r Demo prog1 and prog2 together starting this Wednesday 2: Application Layer 2.
Dr. Philip Cannata 1 The Web and HTTP. Dr. Philip Cannata 2 Application Layer 2-2 Chapter 2 Application Layer Computer Networking: A Top Down Approach.
Application Layer 2-1 Lecture 4: Web and HTTP. Web and HTTP First, a review… web page consists of objects object can be HTML file, JPEG image, Java applet,
Advance Computer Networks Lecture#05 Instructor: Engr. Muhammad Mateen Yaqoob.
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 2: Application.
Slides based on Carey Williamson’s: FTP & SMTP1 File Transfer Protocol (FTP) r FTP client contacts FTP server at port 21, specifying TCP as transport protocol.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
World Wide Web r Most Web pages consist of: m base HTML page, and m several referenced objects addressed by a URL r URL has two components: host name and.
COMP 431 Internet Services & Protocols
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Week 11: Application Layer 1 Web and HTTP r Web page consists of objects r Object can be HTML file, JPEG image, Java applet, audio file,… r Web page consists.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
© Janice Regan, CMPT 128, Jan 2007 CMPT 371 Data Communications and Networking HTTP 0.
Lecture 5 Internet Core: Protocol layers. Application Layer  We will learn about protocols by examining popular application-level protocols  HTTP 
Spring 2006 CPE : Application Layer_ 1 Special Topics in Computer Engineering Application layer: Some of these Slides are Based on Slides.
درس مهندسی اینترنت – مهدی عمادی مهندسی اینترنت برنامه‌نویسی در اینترنت 1 SMTP, FTP.
2: Application Layer 1 Chapter 2 Application Layer These ppt slides are originally from the Kurose and Ross’s book. But some slides are deleted and added.
Application Layer Dr. Adil Yousif Lecture 2 CS.
Block 5: An application layer protocol: HTTP
HTTP request message: general format
Application layer 1 Principles of network applications 2 Web and HTTP
CS 1652 Jack Lange University of Pittsburgh
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 9
Application HTTP.
Chapter 2: Application layer
The Application Layer: SMTP, FTP
Application Layer Part 1
Chapter 2 Application Layer
Chapter 2 Application Layer
Part II Application Layer.
Presentation transcript:

Session 4 INST 346 Technologies, Infrastructure and Architecture The Web Session 4 INST 346 Technologies, Infrastructure and Architecture

Quiz Start: 5:00 sharp End: 5:05 sharp (pencil down or zero credit) Include your name! No communication with anyone till 5:05 No email, no talking, no SMS, no chat, … Even if you finish early! Open book, open notes, open Web, open mind

Goals for Today Finish HTTP Getahead: Email Wireshark preview

HTTP request message two types of HTTP messages: request, response ASCII (human-readable format) carriage return character request line (GET, POST, HEAD commands) line-feed character GET /index.html HTTP/1.1\r\n Host: www-net.cs.umass.edu\r\n User-Agent: Firefox/3.6.10\r\n Accept: text/html,application/xhtml+xml\r\n Accept-Language: en-us,en;q=0.5\r\n Accept-Encoding: gzip,deflate\r\n Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n Keep-Alive: 115\r\n Connection: keep-alive\r\n \r\n header lines carriage return, line feed at start of line indicates end of header lines * Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP request message: general format method sp URL sp version cr request line lf cr lf value header field name header lines ~ ~ cr lf value header field name cr lf ~ entity body ~ body

Method types HTTP/1.0: HTTP/1.1: GET POST input is uploaded to server in entity body HEAD asks server to leave requested object out of response HTTP/1.1: GET, POST, HEAD PUT uploads file in entity body to path specified in URL field DELETE deletes file specified in the URL field

HTTP response message status line (protocol status code status phrase) HTTP/1.1 200 OK\r\n Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n Server: Apache/2.0.52 (CentOS)\r\n Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n ETag: "17dc6-a5c-bf716880"\r\n Accept-Ranges: bytes\r\n Content-Length: 2652\r\n Keep-Alive: timeout=10, max=100\r\n Connection: Keep-Alive\r\n Content-Type: text/html; charset=ISO-8859-1\r\n \r\n data data data data data ... header lines data, e.g., requested HTML file * Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP response status codes status code appears in 1st line in server-to-client response message. some sample codes: 200 OK request succeeded, requested object later in this msg 301 Moved Permanently requested object moved, new location specified later in this msg (Location:) 400 Bad Request request msg not understood by server 404 Not Found requested document not found on this server 505 HTTP Version Not Supported

Cookies

Cookies what cookies can be used for: how to keep “state”: aside authorization shopping carts recommendations user session state (Web e-mail) cookies and privacy: cookies permit sites to learn a lot about you you may supply name and e-mail to sites how to keep “state”: protocol endpoints: maintain state at sender/receiver over multiple transactions cookies: http messages carry state

Web caches (proxy server) goal: satisfy client request without involving origin server user sets browser: Web accesses via cache browser sends all HTTP requests to cache object in cache: cache returns object else cache requests object from origin server, then returns object to client HTTP response proxy server HTTP request client origin server HTTP request HTTP response client

Why Web caching reduce response time for client request reduce traffic on an institution’s access link Internet dense with caches enables low-bandwidth content providers to effectively deliver content

Caching example: without local cache assumptions: avg object size: 100K bits avg request rate from browsers to origin servers:15/sec avg data rate to browsers: 1.50 Mbps RTT from institutional router to any origin server: 2 sec access link rate: 1.54 Mbps consequences: LAN utilization: 15% access link utilization = 99% total delay = Internet delay + access delay + LAN delay = 2 sec + minutes + usecs origin servers public Internet 1.54 Mbps access link problem! institutional network 1 Gbps LAN

Caching example: install local cache Calculating access link utilization, delay with cache: suppose cache hit rate is 0.4 40% requests satisfied at cache, 60% requests satisfied at origin origin servers public Internet access link utilization: 60% of requests use access link data rate to browsers over access link = 0.6*1.50 Mbps = .9 Mbps utilization = 0.9/1.54 = .58 1.54 Mbps access link institutional network 1 Gbps LAN total delay = 0.6 * (delay from origin servers) +0.4 * (delay when satisfied at cache) = 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs local web cache

If-modified-since: <date> If-modified-since: <date> Conditional GET client server Goal: don’t send object if cache has up-to-date cached version no object transmission delay lower link utilization cache: specify date of cached copy in HTTP request If-modified-since: <date> server: response contains no object if cached copy is up-to-date: HTTP/1.0 304 Not Modified HTTP request msg If-modified-since: <date> object not modified before <date> HTTP response HTTP/1.0 304 Not Modified HTTP request msg If-modified-since: <date> object modified after <date> HTTP response HTTP/1.0 200 OK <data>

Getahead: Email

Electronic mail User Agent Three major components: user agents user mailbox outgoing message queue Three major components: user agents mail servers simple mail transfer protocol: SMTP User Agent a.k.a. “mail reader” composing, editing, reading mail messages e.g., Outlook, Thunderbird, iPhone mail client outgoing, incoming messages stored on server mail server SMTP user agent

Electronic mail: mail servers mailbox contains incoming messages for user message queue of outgoing (to be sent) mail messages SMTP protocol between mail servers to send email messages client: sending mail server “server”: receiving mail server user agent mail server user agent SMTP mail server user agent SMTP SMTP user agent mail server user agent user agent

Electronic Mail: SMTP [RFC 2821] uses TCP to reliably transfer email message from client to server, port 25 direct transfer: sending server to receiving server three phases of transfer handshaking (greeting) transfer of messages closure command/response interaction (like HTTP) commands: ASCII text response: status code and phrase messages must be in 7-bit ASCI

Scenario: Alice sends message to Bob 1) Alice uses UA to compose message “to” bob@someschool.edu 2) Alice’s UA sends message to her mail server; message placed in message queue 3) client side of SMTP opens TCP connection with Bob’s mail server 4) SMTP client sends Alice’s message over the TCP connection 5) Bob’s mail server places the message in Bob’s mailbox 6) Bob invokes his user agent to read message user agent user agent 1 mail server mail server 2 3 6 4 5 Alice’s mail server Bob’s mail server

Sample SMTP interaction S: 220 hamburger.edu C: HELO crepes.fr S: 250 Hello crepes.fr, pleased to meet you C: MAIL FROM: <alice@crepes.fr> S: 250 alice@crepes.fr... Sender ok C: RCPT TO: <bob@hamburger.edu> S: 250 bob@hamburger.edu ... Recipient ok C: DATA S: 354 Enter mail, end with "." on a line by itself C: Do you like ketchup? C: How about pickles? C: . S: 250 Message accepted for delivery C: QUIT S: 221 hamburger.edu closing connection

Try SMTP interaction for yourself: telnet servername 25 see 220 reply from server enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands above lets you send email without using email client (reader)

SMTP: final words comparison with HTTP: SMTP uses persistent connections SMTP requires message (header & body) to be in 7-bit ASCII SMTP server uses CRLF.CRLF to determine end of message comparison with HTTP: HTTP: pull SMTP: push both have ASCII command/response interaction, status codes HTTP: each object encapsulated in its own response message SMTP: multiple objects sent in multipart message

Before You Go On a sheet of paper, answer the following (ungraded) question (no names, please): What was the muddiest point in today’s class?