MIPS Instructions.

Slides:



Advertisements
Similar presentations
Central Processing Unit
Advertisements

1 Datapath and Control (Multicycle datapath) CDA 3101 Discussion Section 11.
CIS 314 Fall 2005 MIPS Datapath (Single Cycle and Multi-Cycle)
Multicycle Datapath & Control Andreas Klappenecker CPSC321 Computer Architecture.
1  1998 Morgan Kaufmann Publishers We will be reusing functional units –ALU used to compute address and to increment PC –Memory used for instruction and.
1 Chapter Five The Processor: Datapath and Control.
CS-447– Computer Architecture Lecture 12 Multiple Cycle Datapath
L14 – Control & Execution 1 Comp 411 – Fall /04/09 Control & Execution Finite State Machines for Control MIPS Execution.
CSE378 Multicycle impl,.1 Drawbacks of single cycle implementation All instructions take the same time although –some instructions are longer than others;
1 5.5 A Multicycle Implementation A single memory unit is used for both instructions and data. There is a single ALU, rather than an ALU and two adders.
10/26/2004Comp 120 Fall October Only 11 to go! Questions? Today Exam Review and Instruction Execution.
CSCE 212 Chapter 5 The Processor: Datapath and Control Instructor: Jason D. Bakos.
Fall 2007 MIPS Datapath (Single Cycle and Multi-Cycle)
1 Chapter Five. 2 We're ready to look at an implementation of the MIPS Simplified to contain only: –memory-reference instructions: lw, sw –arithmetic-logical.
10/18/2005Comp 120 Fall October Questions? Instruction Execution.
L15 – Control & Execution 1 Comp 411 – Spring /25/08 Control & Execution Finite State Machines for Control MIPS Execution.
331 W10.1Spring :332:331 Computer Architecture and Assembly Language Spring 2005 Week 10 Building a Multi-Cycle Datapath [Adapted from Dave Patterson’s.
CPU Architecture Why not single cycle? Why not single cycle? Hardware complexity Hardware complexity Why not pipelined? Why not pipelined? Time constraints.
Class 9.1 Computer Architecture - HUJI Computer Architecture Class 9 Microprogramming.
Processor I CPSC 321 Andreas Klappenecker. Midterm 1 Thursday, October 7, during the regular class time Covers all material up to that point History MIPS.
1 We're ready to look at an implementation of the MIPS Simplified to contain only: –memory-reference instructions: lw, sw –arithmetic-logical instructions:
1  1998 Morgan Kaufmann Publishers CH5 Datapath review.
The Multicycle Processor CPSC 321 Andreas Klappenecker.
Chapter 5 Processor Design. Spring 2005 ELEC 5200/6200 From Patterson/Hennessey Slides We're ready to look at an implementation of the MIPS Simplified.
CPE232 Basic MIPS Architecture1 Computer Organization Multi-cycle Approach Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides
1 CS/COE0447 Computer Organization & Assembly Language Multi-Cycle Execution.
C HAPTER 5 T HE PROCESSOR : D ATAPATH AND C ONTROL M ULTICYCLE D ESIGN.
1  2004 Morgan Kaufmann Publishers Chapter Five.
Datapath and Control AddressInstruction Memory Write Data Reg Addr Register File ALU Data Memory Address Write Data Read Data PC Read Data Read Data.
Multicycle datapath.
1 CS/COE0447 Computer Organization & Assembly Language Chapter 5 Part 3.
Chapter 4 From: Dr. Iyad F. Jafar Basic MIPS Architecture: Multi-Cycle Datapath and Control.
1. 2 MIPS Hardware Implementation Full die photograph of the MIPS R2000 RISC Microprocessor. The 1986 MIPS R2000 with five pipeline stages and 450,000.
1 CS/COE0447 Computer Organization & Assembly Language Chapter 5 Part 3.
1 CS/COE0447 Computer Organization & Assembly Language Chapter 5 Part 3 In-Class Exercises.
Multi-Cycle Datapath and Control
CS161 – Design and Architecture of Computer Systems
Control & Execution Finite State Machines for Control MIPS Execution.
Systems Architecture I
Five Execution Steps Instruction Fetch
CS/COE0447 Computer Organization & Assembly Language
Multiple Cycle Implementation of MIPS-Lite CPU
Chapter Five.
Control & Execution Finite State Machines for Control MIPS Execution.
CS/COE0447 Computer Organization & Assembly Language
CSCE 212 Chapter 5 The Processor: Datapath and Control
Chapter Five The Processor: Datapath and Control
Multicycle Approach Break up the instructions into steps
The Multicycle Implementation
CS/COE0447 Computer Organization & Assembly Language
Chapter Five The Processor: Datapath and Control
Drawbacks of single cycle implementation
The Multicycle Implementation
Systems Architecture I
Multicycle Approach We will be reusing functional units
October 24 Programming problems? Read Section 6.1 for November 5
COSC 2021: Computer Organization Instructor: Dr. Amir Asif
Processor (II).
Processor: Multi-Cycle Datapath & Control
Multicycle Design.
CS/COE0447 Computer Organization & Assembly Language
Multi-Cycle Datapath Lecture notes from MKP, H. H. Lee and S. Yalamanchili.
Review Fig 4.15 page 320 / Fig page 322
Chapter Four The Processor: Datapath and Control
5.5 A Multicycle Implementation
Drawbacks of single cycle implementation
Drawbacks of single cycle implementation
Systems Architecture I
CS161 – Design and Architecture of Computer Systems
Presentation transcript:

MIPS Instructions

Required ALU Functions ADD, SUB, AND, OR, XOR, SHL, SHR Simple Implementation: ai bi ai-1 ai+1 ADD SUB AND OR XOR s 3

Optimizations Merge the ADD and SUB Assume 2’s complement Subtracting is adding a negative Negate a number by inverting its bits and adding 1 a2 b2 a1 b1 a0 b0 s XOR XOR XOR FA FA FA

Multicycle Approach Break up the instructions into steps, each step takes a cycle balance the amount of work to be done restrict each cycle to use only one major functional unit At the end of a cycle store values for use in later cycles (easiest thing to do) introduce additional “internal” registers

Five Execution Steps Instruction Fetch Instruction Decode and Register Fetch Execution, Memory Address Computation, or Branch Completion Memory Access or R-type instruction completion Write-back step INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Step 1: Instruction Fetch Use PC to get instruction and put it in the Instruction Register. Increment the PC by 4 and put the result back in the PC. Can be described succinctly using RTL "Register-Transfer Language" IR <= Memory[PC]; PC <= PC + 4; Can we figure out the values of the control signals? What is the advantage of updating the PC now?

Step 2: Instruction Decode Read registers rs and rt in case we need them Compute the branch address in case the instruction is a branch RTL: A <= Reg[IR[25:21]]; B <= Reg[IR[20:16]]; ALUOut <= PC + (sign-extend(IR[15:0]) << 2); We aren't setting any control lines based on the instruction type (we are busy "decoding" it in our control logic)

Step 3 (instruction dependent) ALU is performing one of three functions, based on instruction type Memory Reference: ALUOut <= A + sign-extend(IR[15:0]); R-type: ALUOut <= A op B; Branch: if (A==B) PC <= ALUOut;

Step 4 (R-type or memory-access) Loads and stores access memory MDR <= Memory[ALUOut]; or Memory[ALUOut] <= B; R-type instructions finish Reg[IR[15:11]] <= ALUOut; The write actually takes place at the end of the cycle on the edge

Write-back step Reg[IR[20:16]] <= MDR; Which instruction needs this?

Summary: