Two-Photon Luminescent Bone Imaging Using Europium Nanoagents

Slides:



Advertisements
Similar presentations
Date of download: 5/28/2016 Copyright © 2016 SPIE. All rights reserved. (a) A stack of representative three-dimensional images of 80-nm AuNPs embedded.
Advertisements

Protoporphyrin IX–gold nanoparticle conjugates as an efficient photosensitizer in cervical cancer therapy  Hossein Eshghi, PhD, Ameneh Sazgarnia, MSc,
Chemical enhancement of fingermark in blood on thermal paper
Evaluation of SERS labeling of CD20 on CLL cells using optical microscopy and fluorescence flow cytometry  Christina M. MacLaughlin, BSc, Edward P.K.
Kent O. Kirlikovali, Alexander M. Spokoyny  Chem 
Two-Photon Luminescent Bone Imaging Using Europium Nanoagents
“Seeing” the Invisibles at the Single-Molecule Level
Volume 2, Issue 4, Pages (April 2017)
A New Dimension for Low-Dimensional Carbon Nanostructures
Quentin Michaudel, Brett P. Fors  Chem 
Volume 3, Issue 5, Pages (November 2017)
Robert S. Jordan, Yves Rubin  Chem 
Volume 110, Issue 3, Pages (February 2016)
Different Metabolic Responses in α-, β-, and δ-Cells of the Islet of Langerhans Monitored by Redox Confocal Microscopy  Ivan Quesada, Mariana G. Todorova,
Volume 3, Issue 4, Pages (October 2017)
Kent O. Kirlikovali, Alexander M. Spokoyny  Chem 
Volume 31, Issue 1, Pages (July 2009)
Efficient Energy-Conversion Materials for the Future: Understanding and Tailoring Charge-Transfer Processes in Carbon Nanostructures  Volker Strauss,
Volume 2, Issue 5, Pages (May 2017)
Insertion of Alzheimer’s Aβ40 Peptide into Lipid Monolayers
Direct Growth of Well-Aligned MOF Arrays onto Various Substrates
Volume 14, Issue 4, Pages (October 2011)
Volume 1, Issue 1, Pages (September 2017)
A Sensor for Trace H2O Detection in D2O
Materially Engineered Artificial Pollinators
Multiphoton Microscopy for the Investigation of Dermal Penetration of Nanoparticle- Borne Drugs  Frank Stracke, Barbara Weiss, Claus-Michael Lehr, Karsten.
Volume 1, Issue 2, Pages (August 2016)
Thermal Imaging of Receptor-Activated Heat Production in Single Cells
Multiphoton Excitation Provides Optical Sections from Deeper within Scattering Specimens than Confocal Imaging  Victoria E. Centonze, John G. White  Biophysical.
Volume 1, Issue 2, Pages (August 2016)
Volume 14, Issue 1, Pages (January 2007)
Chris S. Hawes, Thorfinnur Gunnlaugsson  Chem 
Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two- Photon Laser Scanning Microscopy  Jun B. Ding, Kevin T. Takasaki, Bernardo.
Volume 3, Issue 6, Pages (December 2017)
Volume 2, Issue 2, Pages (February 2017)
Volume 142, Issue 6, Pages (September 2010)
Asako Sawano, Hiroshi Hama, Naoaki Saito, Atsushi Miyawaki 
Yuping Wang, J. Fraser Stoddart  Chem 
Fiber-Dependent and -Independent Toxicity of Islet Amyloid Polypeptide
Reversible and Quantitative Photoregulation of Target Proteins
Exploring New Frontiers in Medical Diagnostics through Collaboration
Volume 4, Issue 2, Pages (February 2018)
Fluorescence-Based Assay for Carbonic Anhydrase Inhibitors
What Limits the Performance of Ta3N5 for Solar Water Splitting?
Bio-inspired Self-Healing Electrolytes for Li-S Batteries
Volume 31, Issue 1, Pages (July 2009)
Volume 142, Issue 6, Pages (September 2010)
Volume 2, Issue 6, Pages (June 2017)
Volume 4, Issue 2, Pages (February 2018)
Transforming CO2 by Stabilizing the Labile Product
Volume 3, Issue 1, Pages (July 2017)
Hong Wang, Bahareh Khezri, Martin Pumera  Chem 
Volume 2, Issue 4, Pages (April 2017)
Volume 13, Issue 2, Pages (February 2006)
Sensing Very Weak Strains at the Single-Molecule Scale
Binding-Linked Protonation of a DNA Minor-Groove Agent
Volume 1, Issue 1, Pages (July 2016)
Richard Stones, Alexandra Olaya-Castro  Chem 
A Pulsed Electric Field Enhances Cutaneous Delivery of Methylene Blue in Excised Full- Thickness Porcine Skin  Patricia G. Johnson, Stephen A. Gallo, Sek.
The Elusive Nature of Excited States in Singlet Fission Materials
Volume 4, Issue 6, Pages (June 2018)
Volume 4, Issue 1, Pages (January 2018)
Volume 3, Issue 1, Pages (July 2017)
Volume 3, Issue 1, Pages 8-10 (July 2017)
Volume 4, Issue 3, Pages (March 2018)
Volume 115, Issue 12, Pages (December 2018)
Volume 2, Issue 6, Pages (June 2017)
Reaction: Synthesis in Drug Discovery, the Short and Long of It
STED Nanoscopy Goes Low Power
Volume 3, Issue 5, Pages (November 2017)
Presentation transcript:

Two-Photon Luminescent Bone Imaging Using Europium Nanoagents Esther M. Surender, Steve Comby, Brenton L. Cavanagh, Orlaith Brennan, T. Clive Lee, Thorfinnur Gunnlaugsson  Chem  Volume 1, Issue 3, Pages 438-455 (September 2016) DOI: 10.1016/j.chempr.2016.08.011 Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 1 Structural Design of the Nanoparticulate Imaging Agent (A) The 1,3-diketone-sensitizing ligand nta. (B) The synthesized complex 1.Eu.Na. (C) The surface-functionalized AuNP system AuNP-1.Eu.Na. Chem 2016 1, 438-455DOI: (10.1016/j.chempr.2016.08.011) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 2 DLS and TEM Characterization of the Size of Functionalized Gold Nanoparticles (A) Volume-distribution profile determined by DLS analysis for AuNP-1.Eu.Na (1 × 10−7 M) in H2O at 298 K. (B) Size-distribution profile calculated from analysis of the TEM images of AuNP-1.Eu.Na (4 × 10−7 M). Chem 2016 1, 438-455DOI: (10.1016/j.chempr.2016.08.011) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 3 Spectroscopic Determination of 1:1 Ternary-Complex Formation Changes in the normalized Eu(III) emission (λex = 330 nm) of 1.Eu.Na (10 μM, ) and AuNP-1.Eu.Na (0.1 μM) at 612 and 616 nm, respectively, as a function of equivalents of nta in buffered 0.1 M HEPES solution at pH 7.4 (I = 0.1 M NaCl) () and D2O (). Chem 2016 1, 438-455DOI: (10.1016/j.chempr.2016.08.011) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 4 Phosphorescence Studies Showing the pH Dependence of the Ternary Complex System AuNP-1.Eu.Na-nta in Aqueous Solution (A) The phosphorescent response of AuNP-1.Eu.Na (1.0 × 10−7 M) and nta (20 equiv) as a function of pH in H2O (I = 0.1) at 298 K (λexc = 330 nm). (B) Changes in the integrated Eu(III) emission as a function of pH for both the forward (pH 9.0→3.5, red) and backward (pH 3.5→9.0, blue) titrations, measured between 570 and 720 nm. Chem 2016 1, 438-455DOI: (10.1016/j.chempr.2016.08.011) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 5 Illustration of Microscratched Bovine Bone Specimens Specimens were immersed in either AuNP-1.Eu.Na or AuNP-1.Eu initially for 20 hr and then for a further 4 hr. Chem 2016 1, 438-455DOI: (10.1016/j.chempr.2016.08.011) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 6 Microscopy of Microdamaged Bovine Bone Structure Images show microdamaged bovine bone structure after being immersed for 0, 4, and 24 hr in an aqueous solution of AuNP-1.Eu.Na (3.1 × 10−4 M) and then immersed in an aqueous solution of nta (1.5 × 10−4 M). (A) Polarized light images. (B) Epifluorescence images were acquired from a LED source (λexc = 365 nm) and a 520 longpass emission filter. All scale bars represent 250 μm; aqueous solution = buffered 0.1 M HEPES (I = 0.1 M NaCl [pH 7.4]). Chem 2016 1, 438-455DOI: (10.1016/j.chempr.2016.08.011) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 7 TPE Fluorescence Microscopy of Microdamaged Bovine Bone Structure Images show microdamaged bovine bone structure after being immersed for 0, 4, and 24 hr in an aqueous solution of AuNP-1.Eu.Na (7.8 × 10−5 M) and then immersed in an aqueous solution of nta (1.5 × 10−4 M) for 30 s. (A) Images taken at the bottom of the microcrack. (B) Images taken at the top of the microcrack. (C) Whole-projection images of the microcrack (z stack). Each image was acquired with a Ti-sapphire laser (λ = 750 nm) and a red-channel emission filter (λem = 565–610 nm). All scale bars represent 150 μm; aqueous solution = buffered 0.1 M HEPES (I = 0.1 M NaCl [pH 7.4]). Chem 2016 1, 438-455DOI: (10.1016/j.chempr.2016.08.011) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 8 2D TPE Microscopy of Microdamaged Bovine Bone Structure Images show microdamaged bovine bone structure after being immersed for 0, 4, and 24 hr in an aqueous solution of AuNP-1.Eu.Na and then immersed in an aqueous solution of nta (1.5 × 10−4 M) for 30 s. All scale bars represent 85 μm. (A) Concentration of AuNP-1.Eu.Na = 3.1 × 10−4 M. (B) Concentration of AuNP-1.Eu.Na = 1.6 × 10−4 M. Chem 2016 1, 438-455DOI: (10.1016/j.chempr.2016.08.011) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 9 3D TPE Microscopy of Microdamaged Bovine Bone Structure Images show microdamaged bovine bone structure after being immersed for 0, 4, and 24 hr in an aqueous solution of AuNP-1.Eu.Na and then immersed in an aqueous solution of nta (1.5 × 10−4 M) for 30 s. All scale bars represent 85 μm. (A) Concentration of AuNP-1.Eu.Na = 3.1 × 10−4 M. (B) Concentration of AuNP-1.Eu.Na = 1.6 × 10−4 M. Chem 2016 1, 438-455DOI: (10.1016/j.chempr.2016.08.011) Copyright © 2016 Elsevier Inc. Terms and Conditions

Chem 2016 1, 438-455DOI: (10.1016/j.chempr.2016.08.011) Copyright © 2016 Elsevier Inc. Terms and Conditions