Exercise.

Slides:



Advertisements
Similar presentations
Lecture 20: Laminar Non-premixed Flames – Introduction, Non-reacting Jets, Simplified Description of Laminar Non- premixed Flames Yi versus f Experimental.
Advertisements

Combustion Modeling in FLUENT
Mid Term Meeting, Sept. 21st-22nd, 2004, Karlsruhe Presentation by: F.Pittaluga - UNIGE-DIMSET Dept. of Fluid Machinery, Energy Systems and Transportation.
D 2 Law For Liquid Droplet Vaporization References: Combustion and Mass Transfer, by D.B. Spalding (1979, Pergamon Press). “Recent advances in droplet.
Flamelet-based combustion model for compressible flows
Lecture 15: Capillary motion
Chapter 2 Introduction to Heat Transfer
Basic Governing Differential Equations
MAE 5310: COMBUSTION FUNDAMENTALS
FEMLAB Conference Stockholm 2005 UNIVERSITY OF CATANIA Department of Industrial and Mechanical Engineering Authors : M. ALECCI, G. CAMMARATA, G. PETRONE.
Laminar Premixed Flames and Diffusion Flames
1 “CFD Analysis of Inlet and Outlet Regions of Coolant Channels in an Advanced Hydrocarbon Engine Nozzle” Dr. Kevin R. Anderson Associate Professor California.
Combusting and Gasification Using Discrete Phase Method Combustion Through a Chamber.
Parallel Computation of the 2D Laminar Axisymmetric Coflow Nonpremixed Flames Qingan Andy Zhang PhD Candidate Department of Mechanical and Industrial Engineering.
LES Combustion Modeling for Diesel Engine Simulations Bing Hu Professor Christopher J. Rutland Sponsors: DOE, Caterpillar.
Copyright © Siemens AG All rights reserved. Fluistcom Project Meeting Belfast 24th of December FLUISTCOM Exchange Program at SIEMENS-Muelheim Daniele.
Computer Aided Thermal Fluid Analysis Lecture 10
Mass and energy analysis of control volumes undergoing unsteady processes.
Ghent University - UGent Department of Flow, Heat and Combustion Mechanics Simulations of hydrogen auto-ignition Ivana Stanković.
Flow over an Obstruction MECH 523 Applied Computational Fluid Dynamics Presented by Srinivasan C Rasipuram.
Preliminary Assessment of Porous Gas-Cooled and Thin- Liquid-Protected Divertors S. I. Abdel-Khalik, S. Shin, and M. Yoda ARIES Meeting, UCSD (March 2004)
CHE/ME 109 Heat Transfer in Electronics
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Kinematics Fluid Mechanics July 14, 2015 
Instructor: André Bakker
Two-fluid models for fluidized bed reactors: Latest trends and challenges Yassir Makkawi Chemical Engineering.
Numerical and Experimental Study on Bed-to-Wall Heat Transfer in Conical Fluidized Bed Reactor 17 th International Conference on Mechatronics, Electrical.
Mechanistic Modeling and CFD Simulations of Oil-Water Dispersions in Separation Components Mechanistic Modeling and CFD Simulations of Oil-Water Dispersions.
© Fluent Inc. 9/20/ Introductory FLUENT Notes FLUENT v6.0 Jan 2002 Fluent User Services Center Solver Basics.
1 Fluid Models. 2 GasLiquid Fluids Computational Fluid Dynamics Airframe aerodynamics Propulsion systems Inlets / Nozzles Turbomachinery Combustion Ship.
Mathematical Equations of CFD
1 CHAPTER 6 HEAT TRANSFER IN CHANNEL FLOW 6.1 Introduction (1) Laminar vs. turbulent flow transition Reynolds number is where  D tube diameter  u mean.
Momentum Equations in a Fluid (PD) Pressure difference (Co) Coriolis Force (Fr) Friction Total Force acting on a body = mass times its acceleration (W)
1 MAE 5310: COMBUSTION FUNDAMENTALS Introduction to Laminar Diffusion Flames: Non-Reacting Constant Density Laminar Jets Mechanical and Aerospace Engineering.
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 34.
Auto Ignition, Premixed & Diffusive Combustion in CI Engines
Dr. R. Nagarajan Professor Dept of Chemical Engineering IIT Madras
FREE CONVECTION 7.1 Introduction Solar collectors Pipes Ducts Electronic packages Walls and windows 7.2 Features and Parameters of Free Convection (1)
Convection in Flat Plate Boundary Layers P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi A Universal Similarity Law ……
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 34.
INTRODUCTION TO CONVECTION
The Chemistry of Fuel Combustion in SI Engines P M V Subbarao Professor Mechanical Engineering Department Exploit the Chemical Characteristics of Combustion?!?!
Heat release modeling FPVA-based model V. Terrapon and H. Pitsch 1 Stanford PSAAP Center - Working draft.
Lecture Objectives: Define 1) Reynolds stresses and
APPLICATION TO EXTERNAL FLOW
Heat Transfer by Convection
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 8 Internal flow.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 7 External flow.
University of Wisconsin -- Engine Research Center slide 1 Flamelet Modeling for the Diffusion Combustion in OpenFOAM ME 769 Final Project Presentation.
Ignition by hot jets Dr.-Ing. Detlev Markus. Ignition by hot turbulent jet Investigation of ignition process by hot jets (PTB, Braunschweig, Germany)
University of Wisconsin -- Engine Research Center slide 1 Counter-flow diffusion flame ME Project Chi-wei Tsang Longxiang Liu Krishna P.
CFD ANALYSIS OF MULTIPHASE TRANSIENT FLOW IN A CFB RISER
Objective Introduce Reynolds Navier Stokes Equations (RANS)
Introduction to the Turbulence Models
Problem 1 Diesel fuel (C12H26) at 25 ºC is burned in a steady flow combustion chamber with 20% excess air which also enters at 25 ºC. The products leave.
COMBUSTION TA : Donggi Lee PROF. SEUNG WOOK BAEK
ME 475/675 Introduction to Combustion
A First Course on Kinetics and Reaction Engineering
A First Course on Kinetics and Reaction Engineering
Combustor Model Simulation
Objective Review Reynolds Navier Stokes Equations (RANS)
Lecture Objectives Finish with boundary conditions Unsteady State Flow.
COMBUSTION TA : Donggi Lee PROF. SEUNG WOOK BAEK
Lecture Objectives Review for exam Discuss midterm project
COMBUSTION TA : Donggi Lee PROF. SEUNG WOOK BAEK
FLUID MECHANICS REVIEW
Lecture Objectives: Boundary Conditions Project 1 (software)
Objective Discus Turbulence
COMBUSTION TA : Donggi Lee PROF. SEUNG WOOK BAEK
Convective Heat Transfer
Chemical Engineering Department
Presentation transcript:

Exercise

Exercise I II III SLFMFoam EdmParcelFoam simpleEdmFoam Case Description EDM (Eddy Dissipation Model) Code Structure Tutorial SLFMFoam II SLFM (Stationary Laminar Flamelet Model) Code Structure Tutorial EdmParcelFoam III Case Description Code Structure Tutorial

Case description Piloted CH4/Air Flame Burner Dimensions Main jet inner diameter, d = 7.2 mm Pilot annulus inner diameter = 7.7 mm Pilot annulus outer diameter = 18.2 mm Burner outer wall diameter = 18.9 mm Wind tunnel exit = 30 cm by 30 cm Boundary Conditions Co-flow velocity = 0.9 m/s (291 K, 0.993 atm) Main jet composition = 25% CH4, 75% dry air by volume Main jet kinematic viscosity = 1.58e-05 𝑚 2 /𝑠 Main jet velocity = 49.6 m/s (294K, 0.993 atm) Air Air Air Air R. S. Barlow and J. H. Frank, Proc. Combust. Inst. 27:1087-1095 (1998) R. S. Barlow, J. H. Frank, A. N. Karpetis and J. Y. Chen, Combust. Flame 143:433-449 (2005) Ch. Schneider, A. Dreizler, J. Janicka, Combust. Flame 135:185-190 (2003) Pilot Pilot Pilot Pilot Fuel Fuel

Case description Piloted CH4/Air Flame Composition Measured profiles Main jet (mass fraction) – N2 : 0.647, CH4 : 0.156, O2 : 0.197 Pilot (mass fraction) – N2 : 0.7342, O2 : 0.0540, O : 7.47e-4, H2 : 1.29e-4, H : 2.48e-5 H2O : 0.0942, CO : 4.07e-3, CO2 : 0.1098, OH : 0.0028, NO : 4.80e-6 Co-flow (mass fraction) – N2 : 0.767, O2 : 0.233 Measured profiles Measured radial profiles of Favre-average mixture fraction and temperature at x/d=1 in the four turbulent piloted flames Axial profiles of measured mixture fraction and temperature (Favre average) in piloted flames C, D, E, and F

Case description Computational grid CheckMesh 57.6 cm 10.8 cm MAINJET PILOT COFLOW 10.8 cm

simpleEdmFoam Governing Equations Nonlinear Reaction Term Nonlinear Convection Term

EDM(Eddy Dissipation Model) simpleEdmFoam EDM(Eddy Dissipation Model) EDM (Eddy Dissipation Model) Minimum Local mean rate of combustion The mean reaction rate is controlled by the turbulent mixing rate The reaction rate is limited by the deficient species of reactants or product Finite Rate EDM EDM Arrhenius The mean reaction rate is determined by the minimum

simpleEdmFoam Code Structure Application : simpleEdmFoam New OpenFOAM solver (steady-state) Application : simpleEdmFoam Runtime loop rhoEqn.H : Continuity UEqn.H : Momentum EDM library Correction loop YEqn.H : Species transport EEqn : Energy transport PEqn.H : Pressure correction using SIMPLE loop SimpleEdmFoam

simpleEdmFoam Code Structure /solvers/simpleEdmFoam /libs/combustionModels_POSTECH/EDM EDM library

simpleEdmFoam Solver UEqn.H YEqn.H EEqn.H SimpleEdmFoam.C

simpleEdmFoam EDM library EDM.H EDM.H EDM.C

simpleEdmFoam Code Structure /solvers/simpleEdmFoam/Make options

simpleEdmFoam Case Folder /tutorials/EDM_reacting_flow/ 차분화 / Linear solver / Time step 설정 격자 / 난류모델 / 연소모델 / 화학반응 설정 초기 / 경계조건 설정

simpleEdmFoam PolyMesh boundary /tutorials/EDM_reacting_flow/constant/polyMesh 형상 및 격자 정보 / Boundary 설정 OUTLET CASING OUTERWALL INNERWALL MAINJET PILOT COFLOW boundary

simpleEdmFoam ‘0’ Folder O2 N2 CH4 Species mass fraction : CH4, CO, CO2, H, H2, H2O, N2, NO, O, O2, OH O2 N2 CH4

simpleEdmFoam ‘0’ Folder k epsilon Turbulent Properties: k(turbulent kinetic energy), epsilon(energy dissipation rate), mut(turbulent viscosity), alphat(turbulent thermal diffusivity) k epsilon

simpleEdmFoam ‘0’ Folder U T p U(velocity), T(temperature), p(pressure) U T p

combustionProperties turbulenceProperties simpleEdmFoam ‘constant’ Folder Combustion & Turbulence model chemistryProperties combustionProperties turbulenceProperties RASProperties

thermophysicalProperties simpleEdmFoam Solver Chemical Reactions thermophysicalProperties foam.inp foam.dat

simpleEdmFoam Solver fvSchemes fvSolution Discretization / Linear Solver / Relaxation Factor fvSchemes fvSolution

simpleEdmFoam Solver controldict decomposePardict Calculation / MPI(Message Passing Interface) controldict decomposePardict

simpleEdmFoam Tutorial Open ‘Terminal’ : click ~$ cd tutorials/EDM_reacting_flow ~$ decomposePar 4. ~$ mpirun –np 4 simpleEdmFoam -parallel

simpleEdmFoam Tutorial Calculating ① ②

simpleEdmFoam Tutorial ③ Calculating Time step Linear solver Equations min/max value Residual

simpleEdmFoam Tutorial Calculating ④ fvSolution

simpleEdmFoam Post Processing 1. ~$ reconstructPar 2. ~$ cd tutorials/EDM_reacting_flow/paraFoam

simpleEdmFoam Post Processing ③ : Apply ① : Mesh parts ② : Fields

simpleEdmFoam Post Processing ④ : Last time step data ⑤ : Surface with Edges

simpleEdmFoam Post Processing ⑩ : select field ⑪ : U(velocity)

simpleEdmFoam Post Processing ⑫ : Rescale to data range

simpleEdmFoam Post Processing ⑬ : T(Temperature)

simpleEdmFoam Results (a) Velocity [m/s] (b) Temperature [K] (c) k

simpleEdmFoam Results (a) CH4 mass fraction (b) O2 mass fraction (c) CO mass fraction (d) CO2 mass fraction

SLFMFoam Nemerical Combustion Model – Nonpremixed Equilibrium Assumption – Infinitely fast chemistry Laminar Flamelet Model Steady – SLFM(Stationary Laminar Flamelet Model) Transient – RIF(Representative Interactive Flamelet) Laminar Flame Structure Stretch or Scalar Dissipation Rate Turbulence Conditional Averaging CMC(Conditional Moment Closure) Deterministic relationships between mixture fraction and all other reactive scalars. 1st order closure for chemical reaction rate.

SLFMFoam SLFM Turbulent flame modeled as an ensemble of thin, laminar, locally 1-D flamelet structures Flame structure in terms of stoichiometric Scalar Dissipation Rate ( 𝑵 𝒔𝒕 )

SLFMFoam SLFM Governing equation 0= 𝑁 𝜂 𝜕 2 𝑄 𝜂 𝜕 𝜂 2 + 𝑤 𝜂 𝜂 0= 𝑁 𝜂 𝜕 2 𝑄 𝜂 𝜕 𝜂 2 + 𝑤 𝜂 𝜂 Governing equation Assumed beta-function PDF 𝜕( 𝜌 𝜉 𝜕𝑡 +𝛻∙ 𝜌 𝒖 𝜉 =𝛻∙ 𝜇 𝑡 𝑆 𝑐 𝜉 𝛻 𝜉 Mixture fraction 𝜕( 𝜌 𝜉" 2 𝜕𝑡 +𝛻∙ 𝜌 𝒖 𝜉" 2 =𝛻∙ 𝜇 𝑡 𝑆 𝑐 𝜉" 2 𝛻 𝜉" 2 + 2 𝜇 𝑡 𝑆 𝑐 𝜉" 2 𝛻 𝜉 2 − 𝜌 𝜒 Mixture fraction variance

SLFMFoam Code Structure Application : SLFMFoam Flamelet Library UEqn.H : Momentum Mixturefraction.H : Mixture fraction transport MixturefractionVar.H : Mixture fraction Variance transport PEqn.H : Pressure correction using SIMPLE loop Calculate Yi, T rhoEqn.H : Continuity Application : SLFMFoam Flamelet Library Correction loop Runtime loop β-pdf SLFMlookup.H : update Yi, T SLFMFoam

SLFMFoam Code Structure /solvers/SLFMFoam SLFMFoam.C

Scalar dissipation rate SLFMFoam Solver readSLFMProperties.H Mixture fraction Mixture fraction variance Scalar dissipation rate

SLFMFoam Solver UEqn.C SLFMFoam.C Mixturefraction.C MixturefractionVar.C

SLFMFoam Solver Flamelet library makeSLFMlib.H wylib.inp (OFstream wyFile) Flamelet library

SLFMFoam Solver BetaPDF.H α=0.439, β=4.345, γ=4.388 α=51.85, β=77.78, γ=129.6 α=77.78, β=51.85, γ=129.6 α=23.61, β=1.243, γ=24.85 β-PDF plot

SLFMFoam Case Folder /tutorials/SLFM_reacting_flow/ Flamelet library 초기 / 경계조건 설정 차분화 / Linear solver / Time step 설정 격자 / 난류모델 / 연소모델 / 화학반응 설정

SLFMFoam ‘0’ Folder mf mfVar Mixture fraction, Mixture fraction variance mf mfVar

thermophysicalProperties SLFMFoam ‘constant’ Folder Chemical Reactions thermophysicalProperties mech30.dat . GRI-3.0 mechanism - 53 species - 325 steps thermo30.dat . . .

SLFMFoam ‘constant’ Folder SLFMdict Mixture fraction space ① ① Uniform eta(mixture fraction) space 설정 - false : non uniform eta dict(⑦) 사용 ② eta space section 수 ③ eta spacing - 90 : mixture fraction을 0부터 1까지 총 90개 구간으로 구분 ④ mixture fraction variance 수 ⑤ maximum mixture fraction variance 설정 ⑥ spacing coefficient ⑦ non uniform eta spacing - 0~0.1, 0.1~0.25, 0.25~0.5, 0.5~1.0 4 section(②) 에 각각 20, 20, 30, 20 개의 eta space ⑧ wylib.inp 파일 생성 여부 ⑨ SLFM 연소모델 사용 여부 ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ SLFMdict

SLFMFoam ‘system’ Folder fvSchems fvSolution Discretization / Linear Solver / Relaxation Factor fvSchems fvSolution

SLFMFoam ‘system’ Folder controlDict decomposeParDict Calculation / MPI(Message Passing Interface) controlDict decomposeParDict

SLFMFoam Tutorial Open ‘Terminal’ : click ~$ cd tutorials/SLFM_reacting_flow ~$ decomposePar 4. ~$ mpirun –np 4 SLFMFoam -parallel

SLFMFoam Tutorial Calculating ① ③ . ② .

β-PDF, Flamelet library integration SLFMFoam Tutorial Calculating Time step β-PDF, Flamelet library integration ④ Time Residual

SLFMFoam Post Processing 1. ~$ reconstructPar 2. ~$ cd tutorials/EDM_reacting_flow/paraFoam

SLFMFoam Post Processing ③ : Apply ① : Mesh parts ② : Fields

SLFMFoam Post Processing ④ : Last time step data ⑤ : Surface with Edges

SLFMFoam Post Processing ⑩ : select field ⑪ : U(velocity)

SLFMFoam Post Processing ⑫ : Rescale to data range

SLFMFoam Post Processing ⑬ : T(Temperature)

SLFMFoam Results (a) Velocity [m/s] (b) Temperature [K] (c) k (d) ε

SLFMFoam Results (a) Mixture fraction (b) Mixture fraction variance (c) Scalar dissipation rate (d) Stoichiometric SDR

SLFMFoam Results (a) CH4 mass fraction (b) O2 mass fraction (c) CO mass fraction (d) NO mass fraction (e) CO2 mass fraction

SLFMFoam Comparison EDM SLFM EDM SLFM EDM SLFM (a) Velocity [m/s] (b) Temperature [K] (c) ε

SLFMFoam Comparison EDM SLFM EDM SLFM EDM SLFM (a) CH4 mass fraction (b) O2 mass fraction (c) CO mass fraction

EdmParcelFoam Computational grid CheckMesh ¼ quarter mesh Swirl Flow Inlet ¼ quarter mesh Periodic boundary condition

EdmParcelFoam Code Structure Application : EdmParcelFoam New OpenFOAM solver (steady-state) Application : EdmParcelFoam Parcels.evolve(); Runtime loop rhoEqn.H : Mass UEqn.H : Momentum EDM library Correction loop YEqn.H : Species transport EEqn : Energy transport PEqn.H : Pressure correction using SIMPLE loop EdmParcelFoam

EdmParcelFoam Code Structure /solvers/EdmParcelFoam /libs/combustionModels_POSTECH/EDM EDM library

EdmParcelFoam UEqn.H Solver YEqn.H EEqn.H EdmParcelFoam.C

basicReactingMultiphaseCloud.H EdmParcelFoam ReactingMultiphaseCloud Cloud definition Add to reacting cloud - multiphase composition - devolatilization - surface reactions /solvers/EdmParcelFoam/createCloud.H ReactingCloud Add to thermodynamic cloud - Variable composition (single phase) - Phase change createCloud.H ThermoCloud Add to kinematic cloud - Heat transfer KinematicCloud Cloud function objects Particle forces - buoyancy - drag - pressure gradient, etc … Sub-model - Injection model - Dispersion model - Patch interaction model - Surface film model - Stochastic collision model basicReactingMultiphaseCloud.H

EdmParcelFoam Code Structure /solvers/EdmParcelFoam/Make options

EdmParcelFoam Case Folder /tutorials/oilSpray-singleBurner/ 차분화 / Linear solver / Time step 설정 격자 / 난류모델 / 연소모델 / 화학반응 / 입자 물성치 설정 초기 / 경계조건 설정

EdmParcelFoam PolyMesh boundary /tutorials/oilSpray-singleBurner/constant/polyMesh 형상 및 격자 정보 / Boundary 설정 SLIPWALL WALL INLET boundary

EdmParcelFoam ‘0’ Folder U(velocity) U

combustionProperties turbulenceProperties EdmParcelFoam ‘constant’ Folder Combustion & Turbulence model chemistryProperties combustionProperties turbulenceProperties RASProperties

Cloud Function definition EdmParcelFoam ‘constant’ Folder CloudProperties Particle Properties Cloud Function definition Solution definition

EdmParcelFoam ‘constant’ Folder CloudProperties Particle submodel

EdmParcelFoam ‘constant’ Folder particleTrackDict radiationProperties ParticleTracking & Radiation particleTrackDict radiationProperties

thermophysicalProperties EdmParcelFoam Solver Chemical Reactions thermophysicalProperties foam.inp foam.dat

EdmParcelFoam Tutorial Open ‘Terminal’ : click ~$ cd tutorials/oilSpray-singleBurner ~$ decomposePar 4. ~$ mpirun –np 4 EdmParcelFoam -parallel

EdmParcelFoam Tutorial Calculating ① Radiation part Particle part ① ②

reactingCloud1Properties EdmParcelFoam Tutorial Calculating fvSolution reactingCloud1Properties ③ ③

EdmParcelFoam Tutorial Calculating ④ Radiation

EdmParcelFoam Post Processing 1. ~$ reconstructPar ~$ cd tutorials/EDM_reacting_flow/paraFoam ~$ steadyParticleTracks

EdmParcelFoam Results C7H16 mass fraction (b) H2O mass fraction (c) CO2 mass fraction (d) O2 mass fraction

EdmParcelFoam Results (e) Turbulent dissipation rate (m2/s3) (f) Turbulent kinetic energy (m2/s2) (g) Velocity (m/s) (h) Temperature (K)

EdmParcelFoam Results particleTrackDict