Stellar core collapse with QCD phase transition

Slides:



Advertisements
Similar presentations
What is the fate of the sun and other stars??
Advertisements

Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 18 – Mass-radius relation for black dwarfs Chandrasekhar limiting mass Comparison.
Ch.C. Moustakidis Department of Theoretical Physics Aristotle University of Thessaloniki Greece Equation of state for dense supernova matter 28o International.
Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Hyperon-Quark Mixed Phase in Compact Stars T. Maruyama* (JAEA), T. Tatsumi (Kyoto U), H.-J. Schulze (INFN), S. Chiba (JAEA)‏ *supported by Tsukuba Univ.
Structured Mixed Phase of Nuclear Matter Toshiki Maruyama (JAEA) In collaboration with S. Chiba, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, H.-J.
Nuclear Physics from the sky Vikram Soni CTP. Strongly Interacting density (> than saturation density) Extra Terrestrial From the Sky No.
Ilona Bednarek Ustroń, 2009 Hyperon Star Model.
The evolution and collapse of BH forming stars Chris Fryer (LANL/UA)  Formation scenarios – If we form them, they will form BHs.  Stellar evolution:
The role of neutrinos in the evolution and dynamics of neutron stars José A. Pons University of Alicante (SPAIN)  Transparent and opaque regimes.  NS.
Cooling of Compact Stars with Color Superconducting Quark Matter Tsuneo Noda (Kurume Institute of Technology) Collaboration with N. Yasutake (Chiba Institute.
Thomas Klähn D. Blaschke R. Łastowiecki F. Sandin Thomas Klähn – Three Days on Quarkyonic Island.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Metastability of Hadronic Compact Stars I. Vidaña & I. Bombaci, P. K. Panda, C. Providência “The Complex Physics of Compact Stars” Ladek Zdroj, Poland,
The high density QCD phase transition in compact stars Giuseppe Pagliara Institut für Theoretische Physik Heidelberg, Germany Excited QCD 2010, Tatra National.
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
From Supernovae to Neutron Stars
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
Internal structure of Neutron Stars. Artistic view.
Matthias Hempel, and Jürgen Schaffner-Bielich Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt 44th Karpacz Winter School of Theoretical.
Dense Stellar Matter Strange Quark Matter driven by Kaon Condensation Hyun Kyu Lee Hanyang University Kyungmin Kim HKL and Mannque Rho arXiv:
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
Gravitational waves and neutrino emission from the merger of binary neutron stars Kenta Kiuchi Collaboration with Y. Sekiguchi, K. Kyutoku, M. Shibata.
THIN ACCRETION DISCS AROUND NEUTRON AND QUARK STARS T. Harko K. S. Cheng Z. Kovacs DEPARTMENT OF PHYSICS, THE UNIVERSITY OF HONG KONG, POK FU LAM ROAD,
Current Status of Neutron Stars: Astrophysical Point of View Chang-Hwan 1.
Compact Stars as Sources of Gravitational Waves Y. Kojima (Hiroshima Univ.) 小嶌康史 ( 広島大学理学研究科 ) 第 3 回 TAMA シンポジュウム(柏) 2003 年 2 月 6 - 7 日.
Hadron-Quark phase transition in high-mass neutron stars Gustavo Contrera (IFLP-CONICET & FCAGLP, La Plata, Argentina) Milva Orsaria (FCAGLP, CONICET,
Abel, Bryan, and Norman, (2002), Science, 295, 5552 density molecular cloud analog (200 K) shock 600 pc.
Numerical relativity simulation with Microphysics National Astronomical Observatory of Japan Yuichiro Sekiguchi Masaru Shibata (YITP) Kenta Kiuchi (YITP)
Asymmetric Neutrino Reaction in Magnetized Proto-Neutron Stars in Fully Relativistic Approach Tomoyuki Maruyama BRS, Nihon Univ. (Japan) Tomoyuki Maruyama.
Francesca Gulminelli - LPC Caen, France Extended Nuclear Statistical Equilibrium and applications to (proto)neutron stars Extended Nuclear Statistical.
Magneto-hydrodynamic Simulations of Collapsars Shin-ichiro Fujimoto (Kumamoto National College of Technology), Collaborators: Kei Kotake(NAOJ), Sho-ichi.
Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN.
【 May. 20th CS QCD II 】 N. Yasutake (NAOJ) 安武 伸俊 N. Yasutake (NAOJ) 安武 伸俊 The pasta structure of quark-hadron phase transition and the effects on.
Formation of BH-Disk system via PopIII core collapse in full GR National Astronomical Observatory of Japan Yuichiro Sekiguchi.
Nuclear Matter Density Dependence of Nucleon Radius and Mass and Quark Condensates in the GCM of QCD Yu-xin Liu Department of Physics, Peking University.
Stellar Evolution. Structure Mass governs a star’s temperature, luminosity, and diameter Hydrostatic Equilibrium – the balance between gravity squeezing.
Relativistic EOS for Supernova Simulations
Waseda univ. Yamada lab. D1 Chinami Kato
Neutron star radii and the EOS of neutron-rich matter
Quark deconfinement in compact stars:
Quark deconfinement in compact stars: University of Ferrara, Italy
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
EOS discussion.
Quark star RX J and its mass
Internal structure of Neutron Stars
MERGING REVEALS Neutron Star INNARDS
Self-consistent theory of stellar electron capture rates
The quark-deconfinement model of Gamma-Ray-Bursts
Theoretical Astrophysics Group
Aspects of the QCD phase diagram
Check directly vs data That is, apply new effective force directly to calculate nuclear properties using Hartree-Fock (as for usual well known force)
Phase transitions in neutron stars with BHF
Internal structure of Neutron Stars
Internal structure of Neutron Stars
N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo),
Spontaneous P-parity breaking in QCD at large chemical potentials
Impact of electro-weak processes in Type II Supernovae collapse
Equation of State for Hadron-Quark Mixed Phase and Stellar Collapse
Variational Calculation for the Equation of State
Tests of the Supernova Equation of State using Heavy Ion Collisions
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Nucleosynthesis in jets from Collapsars
Hyun Kyu Lee Hanyang University
Internal structure of Neutron Stars
Effects of the φ-meson on the hyperon production in the hyperon star
Presentation transcript:

Stellar core collapse with QCD phase transition Ken’ichiro Nakazato (Tokyo University of Science) with K. Sumiyoshi(Numazu CT)and S. Yamada(Waseda U), EOS project: T. Miyatsu (Soongsil U)and S. Yamamuro(TUS) Compact Stars in the QCD Phase Diagram IV @ Prerow, Sep. 27, 2014

Fates of massive stars Stars with > 10Msolar make a gravitational col- lapse and, possibly, a supernova explosion. Stars with > 25Msolar are thought to form a black hole (BH). Observations show 2 branches. Hypernovae (Rapid rotation) Faint or Failed Supernovae (Weak rotation) Normal SN Nomoto+ (2006)

Failed supernova neutrinos Failed supernova progenitor makes bounce once and recollapse to the black hole. In this process, temperature and density of central region gets a few times 10 MeV and a few times r 0 (saturation density of nuclear matter), and a lot of neutrinos are emitted. Massive star Proto-neutron star Black hole n n n n Core Collapse n Bounce Mass accretion

Motivation Collapsing core would be enough hot and dense to undergo QCD transition. T heavy ion collision Quark Phase ~150MeV Early Universe Mixed Phase Hadronic Phase Black Hole Formation Stellar Collapse Supernova Compact stars r r0

Aims of this study Nakazato, Sumiyoshi and Yamada(2008a, 2010b, 2013b). We compute the dynamics and n emission for the black hole formation of 40Msolar (failed supernova) and supernova explosion of 15Msolar non-rotating progenitor involving equation of state (EOS) with QCD transition. General relativistic n radiation hydrodynamics in spherical symmetry (Sumiyoshi+ 2005). QCD transition: Shen EOS + MIT bag We investigate the impacts on the dynamics and n signal.

Hydrodynamics & Neutrinos Yamada, Astrophys. J. 475 (1997), 720 Yamada et al., Astron. Astrophys. 344 (1999), 533 Sumiyoshi et al., Astrophys. J. 629 (2005), 922 Spherical, Fully GR Hydrodynamics metric:Misner-Sharp (1964)  mesh:255 non uniform zones + Neutrino Transport (Boltzmann eq.) Species : ne ,ne , nm ( = nt ) ,nm ( =nt ) Energy mesh : 14 zones (0.9 – 350 MeV)   Reactions : e- + p ↔ n + ne, e+ + n ↔ p +ne, n + N ↔ n + N, n + e ↔ n + e, ne + A ↔ A’ + e-, n + A ↔ n + A, e- + e+ ↔ n +n, g* ↔ n +n, N + N’ ↔ N + N’ + n +n

Hadron-quark mixed EOS Nakazato et al., PRD 77 (2008a), 103006 Shen EOS (1998) for Hadronic phase MIT Bag model (Chodos et al. 1974) for Quark phase Bag constant: B = 90, 150 and 250 MeV/fm3 Gibbs conditions are satisfied in Mixed phase. mn = mu + 2md , mp = 2mu + md PH = PQ b equilibrium (n trapping) is assumed in Mixed and Quark phase. md = ms , mp + me = mn + mn

Results for 40M☉ star Evolution of the central density. QCD transition fastens the BH formation. At the bounce, the case with B = 90 MeV/fm3 has high density while others are similar. B = 90 MeV/fm3 B = 150 MeV/fm3 B = 250 MeV/fm3 Without Quarks (Shen)

Compositions (B = 250 MeV/fm3) Nakazato et al., Astrophys. J. 721 (2010b), 1284 27 ms before BH formation 0.07 ms before BH formation at BH formation u 1 d 1 fraction n s 0.5 0.5 p 1015 1015 density (g/cm3) AH 1013 1013 10 20 10 20 10 20 radius (km) radius (km) radius (km) Quark transition occurs at the very late phase and trigger the black hole formation.

Compositions (B = 90 MeV/fm3) Nakazato et al., Astron. Astrophys. 558 (2013b), A50 100 ms after bounce at bounce at BH formation u 1 1 fraction n s d 0.5 0.5 p 1015 1015 density (g/cm3) AH 1013 1013 10 20 10 20 10 20 radius (km) radius (km) radius (km) Quarks appear already at bounce. → the central density gets higher.

Neutrino Signal ne ne nm /nm / nt /nt 2 250 250 luminosity(1053erg/s) 150 150 2 90 90 250 90 150 1 1 40 40 20 20 energy(MeV) 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 time (s) time (s) time (s) Apart from end points, there is no difference even for the model with B = 90 MeV/fm3. Neutrinos emitted from the outer region.

Fate of 15M☉ star For the cases with B = 250,150 MeV/fm3 , QCD transition does not occur at least 1 sec after the bounce.  → no SN explosion mass trajectory Phase diagram: B = 250 MeV/fm3 103 Hadron Mix Quark Yℓ = 0.3 radius (km) 100 10 0.2 0.4 0.6 0.8 1 time after bounce (s) (Sumiyoshi et al. 2005) Central r and T of 1 s after bounce

2nd bounce with B = 90 MeV/fm3 Confirming 2nd bounce and shock formation occurs for 15M☉ model. (Sagert+ 2009, Fischer+ 2011) s = 4.0kB Yℓ = 0.35 Mix → Quark 200.5 ms Hadron → Mix

Our recent work and ADVERTISEMENT

Japanese proverb quark phase? hadron phase? 木に竹を接ぐ(Ki ni také wo tsugu) Joining bamboo to a tree: disharmony quark phase? tree bamboo hadron phase?

New EOS for neutron star matter Miyatsu, Yamamuro & Nakazato, ApJ 777 (2013), 4 Chiral quark-meson coupling (CQMC) model involving the coupling of scalar and vector fields to the quarks within nucleons Relativistic Hartree-Fock PI: Dr. Tsuyoshi Miyatsu

New EOS for neutron star matter Miyatsu, Yamamuro & Nakazato, ApJ 777 (2013), 4 Crust EOS with Thomas-Fermi model consistent with atomic mass data

New EOS for neutron star matter Miyatsu, Yamamuro & Nakazato, ApJ 777 (2013), 4 Mmax = 1.95Msolar with hyperons

New EOS for neutron star matter Miyatsu, Yamamuro & Nakazato, ApJ 777 (2013), 4 http://asphwww.ph.noda.tus.ac.jp/myn/ On-line EOS tables!!

Thank you for your attention

Chiral quark-meson coupling model 一様核物質の状態方程式 ベクトル中間子のテンソル結合により、ハイペロンの生成が抑制される。 → コア部分の状態方程式。 : Chiral quark-meson coupling model から  s dependence を取り込む(非線形効果)

Coupling constant Thomas-Fermi 計算により、原子核の質量・核子分布を計算し、N との結合定数を決める。 gsN, gwN, grN : mass data gsY : Hyperon potential gwY, grY, fwB, frB : ESC model を gwN, grN で scale (Oyamatsu & Iida 2003)

Thomas-Fermi 計算 バルクエネルギーに一様核物質 EOS を用いる。 n 結合エネルギーを最大化 表面 エネルギー クーロン r Chiral quark-meson coupling model 結合エネルギーを最大化 n 幅 dr の領域では一様 表面 エネルギー 中性子 陽子 クーロン エネルギー r

saturation パラメータ n0 = 0.155 fm-3 w0 = -16.1 MeV K0 = 274 MeV Esym = 32.7 MeV L = 75.8 MeV Li et al. arXiv:1211.1178 Esym (MeV)