Stellar core collapse with QCD phase transition Ken’ichiro Nakazato (Tokyo University of Science) with K. Sumiyoshi(Numazu CT)and S. Yamada(Waseda U), EOS project: T. Miyatsu (Soongsil U)and S. Yamamuro(TUS) Compact Stars in the QCD Phase Diagram IV @ Prerow, Sep. 27, 2014
Fates of massive stars Stars with > 10Msolar make a gravitational col- lapse and, possibly, a supernova explosion. Stars with > 25Msolar are thought to form a black hole (BH). Observations show 2 branches. Hypernovae (Rapid rotation) Faint or Failed Supernovae (Weak rotation) Normal SN Nomoto+ (2006)
Failed supernova neutrinos Failed supernova progenitor makes bounce once and recollapse to the black hole. In this process, temperature and density of central region gets a few times 10 MeV and a few times r 0 (saturation density of nuclear matter), and a lot of neutrinos are emitted. Massive star Proto-neutron star Black hole n n n n Core Collapse n Bounce Mass accretion
Motivation Collapsing core would be enough hot and dense to undergo QCD transition. T heavy ion collision Quark Phase ~150MeV Early Universe Mixed Phase Hadronic Phase Black Hole Formation Stellar Collapse Supernova Compact stars r r0
Aims of this study Nakazato, Sumiyoshi and Yamada(2008a, 2010b, 2013b). We compute the dynamics and n emission for the black hole formation of 40Msolar (failed supernova) and supernova explosion of 15Msolar non-rotating progenitor involving equation of state (EOS) with QCD transition. General relativistic n radiation hydrodynamics in spherical symmetry (Sumiyoshi+ 2005). QCD transition: Shen EOS + MIT bag We investigate the impacts on the dynamics and n signal.
Hydrodynamics & Neutrinos Yamada, Astrophys. J. 475 (1997), 720 Yamada et al., Astron. Astrophys. 344 (1999), 533 Sumiyoshi et al., Astrophys. J. 629 (2005), 922 Spherical, Fully GR Hydrodynamics metric:Misner-Sharp (1964) mesh:255 non uniform zones + Neutrino Transport (Boltzmann eq.) Species : ne ,ne , nm ( = nt ) ,nm ( =nt ) Energy mesh : 14 zones (0.9 – 350 MeV) Reactions : e- + p ↔ n + ne, e+ + n ↔ p +ne, n + N ↔ n + N, n + e ↔ n + e, ne + A ↔ A’ + e-, n + A ↔ n + A, e- + e+ ↔ n +n, g* ↔ n +n, N + N’ ↔ N + N’ + n +n
Hadron-quark mixed EOS Nakazato et al., PRD 77 (2008a), 103006 Shen EOS (1998) for Hadronic phase MIT Bag model (Chodos et al. 1974) for Quark phase Bag constant: B = 90, 150 and 250 MeV/fm3 Gibbs conditions are satisfied in Mixed phase. mn = mu + 2md , mp = 2mu + md PH = PQ b equilibrium (n trapping) is assumed in Mixed and Quark phase. md = ms , mp + me = mn + mn
Results for 40M☉ star Evolution of the central density. QCD transition fastens the BH formation. At the bounce, the case with B = 90 MeV/fm3 has high density while others are similar. B = 90 MeV/fm3 B = 150 MeV/fm3 B = 250 MeV/fm3 Without Quarks (Shen)
Compositions (B = 250 MeV/fm3) Nakazato et al., Astrophys. J. 721 (2010b), 1284 27 ms before BH formation 0.07 ms before BH formation at BH formation u 1 d 1 fraction n s 0.5 0.5 p 1015 1015 density (g/cm3) AH 1013 1013 10 20 10 20 10 20 radius (km) radius (km) radius (km) Quark transition occurs at the very late phase and trigger the black hole formation.
Compositions (B = 90 MeV/fm3) Nakazato et al., Astron. Astrophys. 558 (2013b), A50 100 ms after bounce at bounce at BH formation u 1 1 fraction n s d 0.5 0.5 p 1015 1015 density (g/cm3) AH 1013 1013 10 20 10 20 10 20 radius (km) radius (km) radius (km) Quarks appear already at bounce. → the central density gets higher.
Neutrino Signal ne ne nm /nm / nt /nt 2 250 250 luminosity(1053erg/s) 150 150 2 90 90 250 90 150 1 1 40 40 20 20 energy(MeV) 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 time (s) time (s) time (s) Apart from end points, there is no difference even for the model with B = 90 MeV/fm3. Neutrinos emitted from the outer region.
Fate of 15M☉ star For the cases with B = 250,150 MeV/fm3 , QCD transition does not occur at least 1 sec after the bounce. → no SN explosion mass trajectory Phase diagram: B = 250 MeV/fm3 103 Hadron Mix Quark Yℓ = 0.3 radius (km) 100 10 0.2 0.4 0.6 0.8 1 time after bounce (s) (Sumiyoshi et al. 2005) Central r and T of 1 s after bounce
2nd bounce with B = 90 MeV/fm3 Confirming 2nd bounce and shock formation occurs for 15M☉ model. (Sagert+ 2009, Fischer+ 2011) s = 4.0kB Yℓ = 0.35 Mix → Quark 200.5 ms Hadron → Mix
Our recent work and ADVERTISEMENT
Japanese proverb quark phase? hadron phase? 木に竹を接ぐ(Ki ni také wo tsugu) Joining bamboo to a tree: disharmony quark phase? tree bamboo hadron phase?
New EOS for neutron star matter Miyatsu, Yamamuro & Nakazato, ApJ 777 (2013), 4 Chiral quark-meson coupling (CQMC) model involving the coupling of scalar and vector fields to the quarks within nucleons Relativistic Hartree-Fock PI: Dr. Tsuyoshi Miyatsu
New EOS for neutron star matter Miyatsu, Yamamuro & Nakazato, ApJ 777 (2013), 4 Crust EOS with Thomas-Fermi model consistent with atomic mass data
New EOS for neutron star matter Miyatsu, Yamamuro & Nakazato, ApJ 777 (2013), 4 Mmax = 1.95Msolar with hyperons
New EOS for neutron star matter Miyatsu, Yamamuro & Nakazato, ApJ 777 (2013), 4 http://asphwww.ph.noda.tus.ac.jp/myn/ On-line EOS tables!!
Thank you for your attention
Chiral quark-meson coupling model 一様核物質の状態方程式 ベクトル中間子のテンソル結合により、ハイペロンの生成が抑制される。 → コア部分の状態方程式。 : Chiral quark-meson coupling model から s dependence を取り込む(非線形効果)
Coupling constant Thomas-Fermi 計算により、原子核の質量・核子分布を計算し、N との結合定数を決める。 gsN, gwN, grN : mass data gsY : Hyperon potential gwY, grY, fwB, frB : ESC model を gwN, grN で scale (Oyamatsu & Iida 2003)
Thomas-Fermi 計算 バルクエネルギーに一様核物質 EOS を用いる。 n 結合エネルギーを最大化 表面 エネルギー クーロン r Chiral quark-meson coupling model 結合エネルギーを最大化 n 幅 dr の領域では一様 表面 エネルギー 中性子 陽子 クーロン エネルギー r
saturation パラメータ n0 = 0.155 fm-3 w0 = -16.1 MeV K0 = 274 MeV Esym = 32.7 MeV L = 75.8 MeV Li et al. arXiv:1211.1178 Esym (MeV)