Modeling the Upper, Middle, & Lower

Slides:



Advertisements
Similar presentations
CALCULATIONS OF THE LCLS INJECTOR USING ASTRA Jean-Paul Carneiro DESY Hamburg ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations.
Advertisements

1 Optimization of baseline front end for a neutrino factory David Neuffer FNAL (August 19, 2009)
Bunched-Beam Phase Rotation- Variation and 0ptimization David Neuffer, A. Poklonskiy Fermilab.
RF Bucket Area Introduction Intense muon beams have many potential applications, including neutrino factories and muon colliders. However, muons are produced.
Simulated real beam into simulated MICE1 Mark Rayner CM26.
Preliminary result on Quarter wave transformer simulation a short lens with a high magnetic field and a long solenoidal magnetic field. Field profile of.
Mark Rayner, Analysis workshop 4 September ‘08: Use of TOFs for Beam measurement & RF phasing, slide 1 Use of TOFs for Beam measurement & RF phasing Analysis.
ABSTRACT The International Design Study for the Neutrino Factory (IDS- NF) baseline design 1 involves a complex chain of accelerators including a single-pass.
SRF Results and Requirements Internal MLC Review Matthias Liepe1.
Ajit Kurup, C. Bontoiu, M. Aslaninejad, J. Pozimski, Imperial College London. A.Bogacz, V. S. Morozov, Y.R. Roblin Jefferson Laboratory K. B. Beard, Muons,
2002/7/02 College, London Muon Phase Rotation at PRISM FFAG Akira SATO Osaka University.
Particle dynamics in electron FFAG Shinji Machida KEK FFAG04, October 13-16, 2004.
Operated by JSA for the U.S. Department of Energy Muons, Inc. Winter MAP Mtg, Mar. 2 nd, 2011 Pre-Linac simulations in G4beamline Kevin B. Beard Muons,Inc.
Bunched-Beam Phase Rotation for a Neutrino Factory David Neuffer Fermilab.
Bunched-Beam Phase Rotation and FFAG -Factory Injection David Neuffer Fermilab.
J. Pozimski UKNF WP1 meeting 10 March 2010 UKNF WP1 milestone table status.
1 EPIC SIMULATIONS V.S. Morozov, Y.S. Derbenev Thomas Jefferson National Accelerator Facility A. Afanasev Hampton University R.P. Johnson Muons, Inc. Operated.
New G4beamline pillbox improvements K.B.Beard 4/26/2011.
Recent Progress Toward a Muon Recirculating Linear Accelerator S.A.Bogacz, V.S.Morozov, Y.R.Roblin 1, K.B.Beard 2, A. Kurup, M. Aslaninejad, C. Bonţoiu,
Marco apollonio/J.CobbMICE coll. meeting 16- RAL - (10/10/2006) 1 Transmittance, scraping and maximum radii for MICE STEPVI M. Apollonio – University of.
Positron source beamline lattice Wanming Liu, ANL
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Muon Collider Design Workshop, BNL, December 1-3, 2009.
How to use it? Basically, given a fieldmap for an RF structure, the time-dependent fields are E(x,y,z,t) = maxGradient * Eo(x,y,z) * sin(ω(t – timeOffset))
Isabell-A. Melzer-Pellmann LET Beam Dynamics Workshop, Lumi scans with wakefields in Merlin Lumi scans with wakefields in Merlin Isabell-A.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Bunched-Beam Phase Rotation - Ring Coolers? - FFAGs? David Neuffer Fermilab.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz Status and Plans for Linac and RLAs.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Status of Baseline Linac and RLAs Design.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Muon Acceleration – RLA, FFAG and Fast Ramping.
1 Front End – present status David Neuffer December 4, 2014.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Acceleration.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Recirculating Linac Acceleration  End-to-end.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim ILC GDE Meeting DESY May 30 – Jun2, 2007 Work performed for.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Alex.
Muons, Inc. Modeling the Upper, Middle, & Lower NF linac in G4beamline Kevin B. Beard, Muons,Inc. & Alex Bogacz, Jefferson Lab LEMC2009 workshop 8-12 Jun.
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Progress on the Linac and RLAs
Parametric Resonance Ionization Cooling of Muons
M. Migliorati, C. Vaccarezza INFN - LNF
Large Booster and Collider Ring
Modeling the Upper, Middle, & Lower
Progress on the Linac and RLAs
CEPC injector high field S-band accelerating structure design and R&D
Upper Linac Update LEMC2009 workshop 8-12 Jun 2009 K.B.Beard
Modeling the Upper, Middle, & Lower
Optimisation of the FETS RFQ
Status of Linac and RLAs – Simulations
Muon RLA - Design Status and Simulations
Muon RLA - Design Status and New Options
Linac and RLAs – Overview of NF-IDS
K.B. Beard1#, S.A. Bogacz2, V.S. Morozov2, Y.R. Roblin2
Muon Inverse Rotation and Acceleration
Electron Source Configuration
An Anticyclotron For Cooling Muons
CEPC Injector positron source
Progress on the Linac and RLAs
Morteza Aslaninejad Cristian Bontoiu Juergen Pozimski
Higgs Factory Backgrounds
RLA WITH NON-SCALING FFAG ARCS
Pre-Linac simulations in G4beamline Alex Bogacz & Yves Roblin
CEPC Injector positron source
Muon RLA - Design Status and New Options
Background Simulations at Fermilab
Muon RLA - Design Status and Simulations
Injector for the Electron Cooler
Simon Jolly UKNFIC Meeting 25th April 2008
Presentation transcript:

Modeling the Upper, Middle, & Lower NF linac in G4beamline Kevin B. Beard, Muons,Inc. & Alex Bogacz, Jefferson Lab LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

Linear Pre-accelerator – 244 MeV to 909 MeV 6 short cryos 15 MV/m 8 medium cryos 17 MV/m 11 long cryos 1.1 Tesla solenoid 1.4 Tesla solenoid 2.4 Tesla solenoid Transverse acceptance (normalized): (2.5)2= 30 mm rad Longitudinal acceptance: (2.5)2 pz/mc= 150 mm Mini-workshop on Low Energy Muon Acceleration, CNU, February 2-5 , 2010

Why another simulation? OptiM – fast, matrix based, some issues with solenoids, very good at tuning (free) GPT – good at tracking ($) G4beamline – tracking + particle decays & interactions, energy depositions, showers, etc., not so good at tuning (free & open source) http://g4beamline.muonsinc.com LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

Field maps single RF cell solenoid Ez Bz double RF cell Bx,By no B yet LEMC2009 workshop 8-12 Jun 2009 Muons, Inc. MAG, Aug 31, 2010

... txt2blfieldmap LEMC2009 workshop 8-12 Jun 2009 Muons, Inc. MAG, Jun 14, 2010

g4beamline 2.02 valve assbly conductor solenoid flux return shield RF cell LEMC2009 workshop 8-12 Jun 2009 Muons, Inc. MAG, Aug 10, 2010

LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010 Muons, Inc.

G4beamline input file z18.in ... # The "default" physics list is QGSP_BERT physics QGSP_BERT disable=Decay ###################### begin: common info ################################# # physical constants: param deg=3.14159/180. param muonmass=105.658 param c_mm_nS=299.792 upperCryomodule $Zcryo1 $j1 $Toff1 $kill1 upperCryomodule $Zcryo2 $j2 $Toff2 $kill2 upperCryomodule $Zcryo3 $j3 $Toff3 $kill3 upperCryomodule $Zcryo4 $j4 $Toff4 $kill4 upperCryomodule $Zcryo5 $j5 $Toff5 $kill5 upperCryomodule $Zcryo6 $j6 $Toff6 $kill6 middleCryomodule $Zcryo7 $j7 $Toff7 $kill7 middleCryomodule $Zcryo8 $j8 $Toff8 $kill8 middleCryomodule $Zcryo9 $j9 $Toff9 $kill9 middleCryomodule $Zcryo10 $j10 $Toff10 $kill10 middleCryomodule $Zcryo11 $j11 $Toff11 $kill11 middleCryomodule $Zcryo12 $j12 $Toff12 $kill12 middleCryomodule $Zcryo13 $j13 $Toff13 $kill13 middleCryomodule $Zcryo14 $j14 $Toff14 $kill14 lowerCryomodule $Zcryo15 $j15 $Toff15a $Toff15b $kill15 lowerCryomodule $Zcryo16 $j16 $Toff16a $Toff16b $kill16 lowerCryomodule $Zcryo17 $j17 $Toff17a $Toff17b $kill17 lowerCryomodule $Zcryo18 $j18 $Toff18a $Toff18b $kill18 lowerCryomodule $Zcryo19 $j19 $Toff19a $Toff19b $kill19 lowerCryomodule $Zcryo20 $j20 $Toff20a $Toff20b $kill20 lowerCryomodule $Zcryo21 $j21 $Toff21a $Toff21b $kill21 solenoid RF timing center Only 534 non-comment lines, produces 244 virtual detectors, 25 cryomodules beam stop LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

How G4beamline defines 0∘ LEMC2009 workshop 8-12 Jun 2009 Vary RF phases 0∘ 90∘ 180∘ How G4beamline defines 0∘ LEMC2009 workshop 8-12 Jun 2009 Muons, Inc. MAG, Aug 10, 2010

Ez(z,t) ≈ qEzo cos(2πf t + φ) cos(π z/L) Simple Phasing 0ₒ≡on crest L=2λ c=λf z=cβt Ez(z,t) ≈ qEzo cos(2πf t + φ) cos(π z/L) +L/2 ΔE ≈ ∫ Ez(z,z/cβ) dz -L/2 ΔE ≈ -2qEzo L cos(π/ 2β) cos(φ) β2/(π (1-β2) ΔE ≈ -2qEzo L cos(π/ 2β) cos(φ) β2/(π (1-β2) Ti ≈ Ti-1+ (zi - zi-1)/(cβi-1) LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010 Muons, Inc. Muons, Inc. ΔE ≈ ∫ Ez(z,z/cβ) dz Ez(z,t) ≈ qEzo cos(2πf t + φ) cos(π z/L) Ti ≈ Ti-1+ (zi - zi-1)/(cβi-1)

1 line fix to BLCMDfieldmap.cc (ought to be in 2.04b) G4beamline 2.03 - bug xcmd: help fieldmap fieldmap implements a field map, E and/or B, from a file. Reads an input file in BLFieldMap format to define E and/or B fields, optionally with time dependence. See the Users Guide for a description of the BLFieldMap format. Named Arguments (#=cannot be changed in place cmd)(@=Tunable): filename Filename for the Field Map. # file Synonym for filename. # current Current of the B-field. @ gradient Gradient of the E-field. @ timeOffset Time offset (ns). didn't work properly 1 line fix to BLCMDfieldmap.cc (ought to be in 2.04b) local[3]-= timeOffset; /* KBB 25aug10 - shift time back by timeOffset */ LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

Ez Ez LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010 Muons, Inc.

phases partially adjusted phases from spreadsheet LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010 Muons, Inc.

IPAC2010 ∆E~10MeV/cell Pz0=220MeV/c transit=0.716 LEMC2009 workshop 8-12 Jun 2009 Muons, Inc. MAG, Jun 14, 2010

retrack 1.17 LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

Comparison of GPT, OptiM, g4beamline KE[MeV] z[cm] G4beamline w/adj. φ's OptiM G4beamline w/OptiM's φ's KE[MeV] LEMC2009 workshop 8-12 Jun 2009 z[cm] Muons, Inc. MAG, Jun 14, 2010

Pz [MeV/c] LEMC2009 workshop 8-12 Jun 2009 t[nS] Muons, Inc. (bunches shifted for legibility) LEMC2009 workshop 8-12 Jun 2009 t[nS] Sep 14, 2010 Muons, Inc.

GPT G4beamline LEMC2009 workshop 8-12 Jun 2009 Muons, Inc. Sep 14, 2010 Muons, Inc.

Optimizing with kmimf + G4beamline Pz * Nm cycle (G4beamline run#) Sep 14, 2010 Muons, Inc.

Partially optimized ~ ½ lost LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

lost LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

those that made it to the end in G4beamline input t,Pz for acceptance OptiM generated input LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.

LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.