Laplace Transformation

Slides:



Advertisements
Similar presentations
LAPLACE TRANSFORMS.
Advertisements

Signal Processing in the Discrete Time Domain Microprocessor Applications (MEE4033) Sogang University Department of Mechanical Engineering.
Lecture 3 Laplace transform
Chapter 7 Laplace Transforms. Applications of Laplace Transform notes Easier than solving differential equations –Used to describe system behavior –We.
Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first.
Laplace Transforms 1. Standard notation in dynamics and control (shorthand notation) 2. Converts mathematics to algebraic operations 3. Advantageous for.
數位控制(三).
Lecture 14: Laplace Transform Properties
Bogazici University Dept. Of ME. Laplace Transforms Very useful in the analysis and design of LTI systems. Operations of differentiation and integration.
THE LAPLACE TRANSFORM LEARNING GOALS Definition The transform maps a function of time into a function of a complex variable Two important singularity functions.
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
University of Khartoum -Signals and Systems- Lecture 11
Sistem Kontrol I Kuliah II : Transformasi Laplace Imron Rosyadi, ST 1.
SE 207: Modeling and Simulation Introduction to Laplace Transform
INTRODUCTION TO LAPLACE TRANSFORM Advanced Circuit Analysis Technique.
Laplace Transforms 1. Standard notation in dynamics and control (shorthand notation) 2. Converts mathematics to algebraic operations 3. Advantageous for.
Introduction to Laplace Transforms. Definition of the Laplace Transform  Some functions may not have Laplace transforms but we do not use them in circuit.
CHAPTER 4 Laplace Transform.
Laplace Transforms 1. Standard notation in dynamics and control (shorthand notation) 2. Converts mathematics to algebraic operations 3. Advantageous for.
Prepared by Mrs. Azduwin Binti Khasri
Fourier Series. Introduction Decompose a periodic input signal into primitive periodic components. A periodic sequence T2T3T t f(t)f(t)
CHAPTER 4 Laplace Transform.
Signal and Systems Prof. H. Sameti Chapter 9: Laplace Transform  Motivatio n and Definition of the (Bilateral) Laplace Transform  Examples of Laplace.
1 Z-Transform. CHAPTER 5 School of Electrical System Engineering, UniMAP School of Electrical System Engineering, UniMAP NORSHAFINASH BT SAUDIN
Mathematical Models and Block Diagrams of Systems Regulation And Control Engineering.
Chapter 4 Transfer Function and Block Diagram Operations § 4.1 Linear Time-Invariant Systems § 4.2 Transfer Function and Dynamic Systems § 4.3 Transfer.
Chapter 2 Laplace Transform 2.1 Introduction The Laplace transform method can be used for solving linear differential equations. Laplace transforms can.
10. Laplace TransforM Technique
1 G. Baribaud/AB-BDI Digital Signal Processing March 2003 DISP-2003 The z-transform  The sampling process  The definition and the properties.
THE LAPLACE TRANSFORM LEARNING GOALS Definition
1 Week 8 3. Applications of the LT to ODEs Theorem 1: If the Laplace transforms of f(t), f ’ (t), and f ’’ (t) exist for some s, then Alternative notation:
ME375 Handouts - Fall 2002 MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.
ES97H Biomedical Signal Processing
Using Partial Fraction Expansion
Chapter 7 The Laplace Transform
Alexander-Sadiku Fundamentals of Electric Circuits
Lecture 2: The Laplace Transform Laplace transform definition Laplace transform properties Relation between time and Laplace domains Initial and Final.
DYNAMIC BEHAVIOR OF PROCESSES :
Signals & systems Ch.3 Fourier Transform of Signals and LTI System
LAPLACE TRANSFORMS.
Lec 4. the inverse Laplace Transform
Laplace Transforms Chapter 3 Standard notation in dynamics and control
CHAPTER III LAPLACE TRANSFORM
Chap2. Modeling in the Frequency Domain
ELECTRIC CIRCUITS EIGHTH EDITION
Chapter 4 Transfer Function and Block Diagram Operations
CHAPTER 5 Z-Transform. EKT 230.
EKT 119 ELECTRIC CIRCUIT II
SIGMA INSTITUTE OF ENGINEERING
Mathematical Modeling of Control Systems
Complex Frequency and Laplace Transform
Laplace Transform Properties
The Laplace Transform Prof. Brian L. Evans
Chapter 15 Introduction to the Laplace Transform
LAPLACE TRANSFORMS PART-A UNIT-V.
UNIT II Analysis of Continuous Time signal
Signal and Systems Chapter 9: Laplace Transform
Mechatronics Engineering
Chapter 5 DT System Analysis : Z Transform Basil Hamed
Fundamentals of Electric Circuits Chapter 15
EKT 119 ELECTRIC CIRCUIT II
CHAPTER-6 Z-TRANSFORM.
Solution of ODEs by Laplace Transforms
Example 1: Find the magnitude and phase angle of
Discrete-Time Signal processing Chapter 3 the Z-transform
9.0 Laplace Transform 9.1 General Principles of Laplace Transform
CHAPTER 4 Laplace Transform. EMT Signal Analysis.
Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first.
Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first.
THE LAPLACE TRANSFORM LEARNING GOALS Definition
Presentation transcript:

Laplace Transformation M d Q Tavares , TB425 dqtm@zhaw.ch

Applied Mathematics (SiSy) SiSy Overview Signals step / impulse / rect / sinc continuous / discret periodic / aperiodic deterministic / random representation in time / frequency domains power and energy in freq domain Systems linearisation feedback and stability discretisation Transforms FR ; FT ; DFT/FFT : Laplace : Z-Transformation : DCT : Applications Biomedical / Operational Research/ Sensorics & Messtechnik Automation / Location & Telecommunication Systems Data Compression & Cryptography / Image Processing / Audio Synthesis & Analysis Statistical Signal Processing LTI DGl; BSB; ZVD; h(t); g(t); G(ω); G(s) u(t) U(ω) u[n] U(z) y(t) Y(ω) y[n] Y(z) LTD DzGl; BSB; ZVD; g[n]; G(ω); G(z) ω t f S-Plane Control (RT) Telecomm (NTM) SigProc (DSV, ASV) Z-Plane n Applied Mathematics (SiSy) x y Mathematics

Laplace Transformation Inhalt Laplace Transformation Definition Properties Examples Comparison to Fouriertransformation References: Laplace Transformation: Skript Kapitel 7 Comparison LTI views: Skript Kapitel 6 Cha P., Rosenberg J., Dym C., „Fundamentals of Modeling and Analyzing Engineering Systems“

Laplace Transformation Notation one-sided transform x(t) X(s) original function transform (Bildfunktion) Definition - Laplace Transformation obs.: x(t) transformable if: - Inverse Laplace Transformation (contour integration) obs: not used. Alternative partial fraction method and Laplace transform tables.

Laplace Transformation Application Solution of linear, time-invariant, ordinary differential equations: - allow resolution through algebraic manipulations - many transform tables already available (less work) - homogeneous and particular solutions obtained simultaneously (solution for transient and steady-state system response) - evaluate system stability (poles of the transfer function)

Laplace Transformation: Properties Linearity Time Derivatives (Differentiationsregel) Time Integration (Integrationsregel) Proof: vide script

Laplace Transformation: Properties Shift in Time Shift in s Time Scaling Start Value Theorem (Anfangswertsatz) Final Value Theorem (Endwertsatz) Only valid if poles on left-halft s-plane

Laplace Transformation Examples A - Laplace transform of the unit step function ε(t) B - Laplace transform of the impulse function δ(t) C - Laplace transform of the unit ramp function x(t) = t ; t≥0 D - Laplace transform of an exponential function x(t)=exp(-at) ; t≥0 E - Laplace transform of sinusoidal functions x(t)=cos(ω0t) ; t≥0 x(t)=sin(ω0t) ; t≥0

Inverse Laplace Transformation Method: Partial Fraction Expansion (Partialbruchzerlegung) Laplace Transform of function x(t) with: m < n Factorise the numerator and denominator: zi : zeros of X(s) pi : poles of X(s) k : gain Calculate the residues αi (alpha-i)

Inverse Laplace Transformation Method: Partial Fractions (Partialbruchzerlegung) Inverse Laplace Transformation for exponential function Obs.: pi roots can be real (single/multiple) or complex conjugate Im{s} S-Plane (S-Ebene) PN-Map (Pol- und Nullstelle) X Re{s} Pole Zero

Laplace Transformation Transform Table (Script pg 95-99) …

Inverse Laplace Transformation Examples A – Function with distinct real poles (unterschiedliche reelle Polstelle) B – Function with real and complex conjugate poles C – Function with repeated poles D – Response of First-Order System : free and step response E – Response of Second-Order System : free and step response

Laplace Transformation : S-Plane Pole Location and corresponding Exponential Functions (Zusammenhang S-Ebene Pol-Stelle und Zeitfunktionen)

Laplace Transformation : S-Plane Pole Location and corresponding Exponential Functions (Zusammenhang S-Ebene Pol-Stelle und Zeitfunktionen)

Laplace Transformation : S-Plane Pole Location and corresponding Exponential Functions (Zusammenhang S-Ebene Pol-Stelle und Zeitfunktionen)

Laplace Transformation Comparison to Fouriertransformation

Laplace Transformation Comparison to Fouriertransformation