SPACIROC S. Ahmad, P. Barrillon, S. Blin, S. Dagoret, F. Dulucq, C. de La Taille IN2P3-OMEGA LAL Orsay, France Y. Kawasaki - RIKEN,Japan I. Hirokazu –

Slides:



Advertisements
Similar presentations
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
Advertisements

18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
ECAL electronics Guido Haefeli, Lausanne PEBS meeting 10.Jan
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
MR (7/7/05) T2K electronics Beam structure ~ 8 (9?) bunches / spill bunch width ~ 60 nsec bunch separation ~ 600 nsec spill duration ~ 5  sec Time between.
PMF: front end board for the ATLAS Luminometer ALFA TWEPP 2008 – 19 th September 2008 Parallel Session B6 – Programmable logic, boards, crates and systems.
Readout ASIC for SiPM detector of the CTA new generation camera (ALPS) N.Fouque, R. Hermel, F. Mehrez, Sylvie Rosier-Lees LAPP (Laboratoire d’Annecy le.
The EC-UNIT P. Barrillon on behalf of JEM-EUSO collaboration EUSO-BALLOON Phase A review 2 nd February 2012, CNES, Toulouse.
A Readout Electronics for MAPMT Matteo Turisini – E. Cisbani Italian National Institute of Health – INFN Rome 1 JLab/CLAS12 RICH Meeting - 16/Nov/2011.
Large area photodetection for Water Cerenkov detectors PMm 2 proposal: Front End Electronics MAROC ASIC Pierre BARRILLON, Sylvie BLIN, Jean-Eric CAMPAGNE,
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
Organization for Micro-Electronics desiGn and Applications HARDROC 3 for SDHCAL OMEGA microelectronics group Ecole Polytechnique CNRS/IN2P3, Palaiseau.
Vendredi 18 décembre 2015 Status report on SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin- Chassard, Christophe.
Specifications Asic description Constraints Interface with PDM board Schedule Summary.
ASIC Activities for the PANDA GSI Peter Wieczorek.
Slide 1Turisini M. Frontend Electronics M.Turisini, E. Cisbani, P. Musico CLAS12 RICH Technical Review, 2013 June Requirements 2.Description of.
Readout Architecture for MuCh Introduction of MuCh Layout of Much ( proposed several schemes) Read ASIC’s Key features Basic Readout chain ROC Block Diagram.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
HaRDROC performance IN2P3/LAL+IPNL+LLR R. GAGLIONE, I. LAKTINEH, H. MATHEZ IN2P3/IPNL LYON M. BOUCHEL, J. FLEURY, C. de LA TAILLE, G. MARTIN-CHASSARD,
CBM 12 th Meeting, October 14-18, 2008, Dubna Present status of the first version of NIHAM TRD-FEE analogic CHIP Vasile Catanescu and Mihai Petrovici NIHAM.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
Selma Conforti Frédéric Dulucq Mowafak El Berni Christophe de La Taille Gisèle Martin-Chassard Wei Wei *
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
June 13rd, 2008 HARDROC2. June 13rd, 2008 European DHCAL meeting, NSM 2 HaRDROC1 architecture Variable gain (6bits) current preamps (50ohm input) One.
CSNSM SPACIROC S. Ahmad, P. Barrillon, S. Blin, S. Dagoret, F. Dulucq, C. de La Taille IN2P3-OMEGA LAL Orsay, France Y. Kawasaki - RIKEN,Japan I. Hirokazu.
Laboratoire de Physique Corpusculaire - Caen S. Drouet – FEAST Front-End Asic for Snemo Tracker Journées VLSI–PCB–FPGA–IAOCAO.
Specifications Asic description Constraints Interface with PDM board Planning Summary.
Week 22: Schematic Week 23-Week 27: Routing Gerber files have been available since 9th July 1st prototype: – PCB manufacturer: supervised by KIT – Cabling:
SKIROC status Calice meeting – Kobe – 10/05/2007.
Tuesday, 20 May 2003OPERA Collaboration Meeting - Gran Sasso1 Status of front-end electronics for the OPERA Target Tracker LAL Orsay S.BONDIL, J. BOUCROT,
Status of front-end electronics for the OPERA Target Tracker
End OF Column Circuits – Design Review
OMEGA3 & COOP The New Pixel Detector of WA97
STATUS OF SPIROC measurement
PMF STATUS ALFA - Electronics meeting 11th February 2008
KLOE II Inner Tracker FEE
Journées VLSI-FPGA-PCB Juin 2010 Xiaochao Fang
Jinfan Chang Experimental Physics Center , IHEP Feb 18 , 2011
LHC1 & COOP September 1995 Report
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
CTA-LST meeting February 2015
DHCAL TECH PROTO READOUT PROPOSAL
LHAASO Electronics developments
Hugo França-Santos - CERN
R&D on large photodetectors and readout electronics FJPPL KEK/Orsay JE Campagne, S. Conforti, F. Dulucq, C. de La Taille, G. Martin-Chassard,, A.
EC board for JEM-EUSO Design investigations
Multi-Anode ReadOut Chip for MaPMTs: MAROC3 MEASUREMENTS
TDC at OMEGA I will talk about SPACIROC asic
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
Electronics for the E-CAL physics prototype
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
EUDET – LPC- Clermont VFE Electronics
Status of n-XYTER read-out chain at GSI
02 / 02 / HGCAL - Calice Workshop
SPIROC Status : Last developments for SPIROC
Christophe de La Taille * Gisèle Martin-Chassard *
X. Zhu1, 3, Z. Deng1, 3, A. Lan2, X. Sun2, Y. Liu1, 3, Y. Shao2
SKIROC status Calice meeting – Kobe – 10/05/2007.
HaRDROC status: (Hadronic RPC Detector Read Out Chip for DHCAL)
PRODUCTION RUN: ROC chips STATUS
HaRDROC status: (Hadronic RPC Detector Read Out Chip for DHCAL)
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
OmegaPix 3D IC prototype for the ATLAS upgrade SLHC pixel project 3D Meeting 19th March, 2010 A. Lounis, C. de La Taille, N. Seguin-Moreau, G.
AMICSA, June 2018 Leuven, Belgium
Application of ASIC for Cherenkov Detection
ASPID (Application of Silicon Photomultipliers to Imaging Detectors)
Readout Electronics for Pixel Sensors
Presented by T. Suomijärvi
Presentation transcript:

SPACIROC S. Ahmad, P. Barrillon, S. Blin, S. Dagoret, F. Dulucq, C. de La Taille IN2P3-OMEGA LAL Orsay, France Y. Kawasaki - RIKEN,Japan I. Hirokazu – JAXA, Japan

Overview SPACIROC - Spatial Photomultiplier Array Counting and Integrating ReadOut Chip Readout chip for 64 channels MAPMT Low-power & radiation hardened Co-designed by LAL/JAXA/RIKEN JEM-EUSO : Extremely High Energy Cosmic Ray(EECR) observer onboard of International Space Station Observing extensive air shower created by the EECRs Consortium of 12 countries led by Riken,Japan

JEM–EUSO – Focal Surface Detector *EC/FEE: PDM Control Board: Cluster Control Board: FS Control Board: JEM-EUSO Data Acquisition Core Outline ~5000 MAPMTs ~300k pixels EC/FEE ASIC Count PDM Control Board FPGA Track Trigger Cluster Control Board DSP Fine Trigger FS Control Board MPU Operation Control Omega-LAL, ISAS/JAXA, RIKEN *EC: refer to P.Barillon’s talk

JEM–EUSO – Front End ASIC 64 channels photon counting Single photon counting 100% trigger efficiency: 1/3 pe Double pulse resolution : 10 ns Charges to Time (Q-to-T) converters Variable trigger pulse width Pixels charge measurement: 13pe – 1500pe MAPMT protection > 1500pe Data acquisition & Readout to be done within 2.5 µs (GTU) Readout Clock : 40MHz Radiation hardness Power budget : <1mW/channel

SPACIROC – Design & Architecture Trig_PA VTH1 64 Anodes *Pre-Amp (adjustable gain) PhotonCounting Dataout0 Trig_FSU *Unipolar Fast Shaper Digital Counters & Readout hν MAPMT VTH2 Trig_VFS Very Fast Shaper 64 pre-amp signals Σ8 VTH3 Trig_KI sum PhotonCounting Dataout7 8 8-pixel-sum KI (Q-to-T) Dynode (D12) KI Dataout Trig_KI dynode VTH4 *Inherited from MAROC3: refer to S.Blin’s talk

SPACIROC – Design & Architecture Photon Counting 64 channels (pixels) – Fast triggering @100 MHz 3 different triggers available for the 1st prototype Trig_PA: output directly from preamplifier Trig_FSU : Maroc3 unipolar fast shaper Trig_VFS : new optimised fast triggering shaper Q-to-T (based on KI02 ASIC – JAXA/RIKEN) 8 channels : each for 8-pixel sum preamplifier signals 1 channel : for last Dynode of MAPMT Input dynamic range: 13pe – 1500pe (MAPMT gain 106) Digital Photon counting : 64 x 8-bit counter , 8 serialized outputs Q-to-T: 8 x 7-bit counter + 1 x 8-bit counter , 1 serialized output

Photon Counting - Architecture vth Input from MAPMT 64 anodes Q <10ns vth

Photon Counting – Simulations Triggers for 80 fC input charge (1/2 pe for PMT gain =106) Trig_FSU Vth=1.2v Δt<10ns Trig_PA Vth=2.35v Δt<5ns Trig_VFS Vth=1.2v Δt<5ns

Photon Counting – Simulations Triggers for 160 fC input charge (1 pe for PMT gain =106) Trig_FSU Vth=1.2v Δt<10ns Trig_PA Vth=2.35v Δt<15ns Trig_VFS Vth=1.2v Δt<5ns

KI(8-Pixel-Sum/Dynode) - Architecture Current Error Adjustment Δt Vth Input from preamp(sum)/ MAPMT D12 Comparateur Charge Amp Impedance Conversion Vth Trigger KI Baseline stabilisation at no signal Q Offset Adjustment Δt Current Sink DC Feedback Activated for large signal Activated for small signal

KI 8-Pixel-Sum – Simulations Input : 2.4pC – 240pC 2.4pC 11pC 52pC 240pC

KI Dynode – Simulations Input : 16pC – 250pC 16pC 94pC 172pC 250pC

SPACIROC – Analog Design Consumption All functionalities could be turn off to minimize consumption Estimation without digital part: Trig _PA: 0.32mW/ch (Vdda=3V) Trig_VFS: 0.53mW/ch (Vdda=3V) Trig_FSU: 0.59mW/ch (Vdda=3V) KI Sum: 0.47mW/ch (Vdda=3V) KI Dynode: 0.56mW/ch (Vdda=3V) Trigger from preamplifier (Trig_PA) Fast preamplifier pulse Counting rate close to 100MHz Not a lot of gain Difficulties to trig down to 80fC Trigger from Maroc3 chip (Trig_FSU) More gain Trig down to 40fC (1/2 pe if PMT gain=5.105) Difficulties to have a counting rate up to 100MHz New Trigger (Trig_VFS) Counting rate could be 100 MHz Trig down to 40fC KI Could trigger for the whole dynamique range (2.4pC – 250pC) in GTU < 1mW/ch

SPACIROC – Digital Overview 8 x digital module for PhotonCounting 1 x digital module for KI 9 x Serialized Data Out line DataOut 8 x 8-bit counter 8 x 7-bit counter + 1 x 8-bit counter DataOut Power Consumption: Photon Counting : 0.105 mW/ch – 0.585 mw/ch KI: 0.175 mW/ch – 0.233 mW/ch 14 14

SPACIROC – Slow Control Cell 1 Scan DFF + triple Data latch Majority voter Bit error detection Non-destructive data readout Bigger layout : SEL protection,... Layout Bascule DFF 16µm Layout Slow Control Cell Spaciroc 32µm Slow control register should be modified to minimize the effect of the single event upset. So we propose this architecture: a D type flip flop to shift register . This flip flop will be used to send the slow control configuration and to readout the last configuration 3 latch blocks commended by the external load signal to set the switch of the asic In case of a SEU on a latch it will be corrected locality thanks to a majority voter and identify by the error_sc signal. 18µm 114µm

SPACIROC – Status Submitted in March 2010 Technology: AMS 0.35µm SiGe Dimensions : 4.6mm x 4.1mm (19 mm²) Power supply: 0-3V Packaging : CQFP240 (proto) FPBGA144(*EC board) 4.6mm Chip arrival: Mid-July Test: September BGA packaging : December 4.1mm *EC: refer to P.Barillon’s talk 16

Thank you for listening !

SPACIROC – Schematic Specifications: Consumption: 1mW/channel Photon counting: 100%trigger efficiency 1/3pe Counting rate can be at 100MHz KI input range : 13pe - 1500pe Radiation hardness Data out : Startbit + 64 bits + Parity This slide shows you functionalities block of the asic The analogue part of asic for jem-euso will be composed of 64 channels for the photon counting, 4 channels with KI Japanese block and a last channel with KI with a dedicated input. The digital part is composed of 8 identical block for photon counting and one other for the KI counter. I remind the main requirements for the circuit: consumption lower than 1mW per channel, for the photon counting 100% trigger efficiency at 1/3pe and to be able to count trigger at 100MHz This asic will be performed to minimize the effect of the Single Event Upset and Latchup. 18

SPACIROC – Power Consumption Component ASIC Consumption(µA) Power dissipation (mW) (vdd=3V) Power dissipation (mW/ch) (vdd=3V) Notes PhotonCounting (PC) : Trig_PA 4480 13.44 0.21 Selectable triggers (Trig_PA,FSU or VFS). For optimal consumption, only one trigger is used VFS 8960 26.88 0.42 FSU 10240 30.72 0.48 KI Sum 960 2.88 0.36 KI for the current sum KI Dynode 150 0.45 KI for last dynode signal BIAS 1800 5.4 0.08 Common for the analog part DAC & Bandgap 600 1.8 0.03 Digital - PC N/A 6.7078 - 37.4368 0.1048 - 0.585 Freq for PC: 25MHz – 100MHz Pulse width for KI : 25 ns – 2450ns Digital - KI 1.5769 - 2.0992 0.1752 - 0.2332 Power dissipation per channel for each analog part including bias & dac: Photon Counting Trig_PA : 0.32 mW/ch VFS : 0.53 mW/ch FSU : 0.59 mW/ch KI Sum : 0.47 mW/ch KI Dynode : 0.56 mW/ch These values came from simulations, measured values from the chip will be slightly different. For 36MHz photoelectron signal arriving at one PMT, estimated power consumption for Digital-PC is about 0.2621mW/ch. For Digital-KI, power consumption will depend on the input charge. 19

SPACIROC - Schedule April May June July 2010 Test Board Schematic Test CAD Assembly Firmware Labview September 2010: 144 pin BGA packaging EC board

Photon Counting – Schematic

KI 8-Pixel-Sum – Schematic

KI Dynode – Schematic