State space model State space model: linear: where: u: input y: output

Slides:



Advertisements
Similar presentations
Chapter 28 – Part II Matrix Operations. Gaussian elimination Gaussian elimination LU factorization LU factorization Gaussian elimination with partial.
Advertisements

Chapter 6 Eigenvalues and Eigenvectors
Determinants Bases, linear Indep., etc Gram-Schmidt Eigenvalue and Eigenvectors Misc
Similarity transformations  Suppose that we are given a ss model as in (1).  Now define state vector v(t) that is the same order of x(t), such that the.
Some useful linear algebra. Linearly independent vectors span(V): span of vector space V is all linear combinations of vectors v i, i.e.
5.II. Similarity 5.II.1. Definition and Examples
Digital Control Systems Vector-Matrix Analysis. Definitions.
Digital Control Systems
Matrices CS485/685 Computer Vision Dr. George Bebis.
Eigen Values Andras Zakupszki Nuttapon Pichetpongsa Inderjeet Singh Surat Wanamkang.
Linear Algebra Review 1 CS479/679 Pattern Recognition Dr. George Bebis.
1 MAC 2103 Module 12 Eigenvalues and Eigenvectors.
PHY 301: MATH AND NUM TECH Chapter 5: Linear Algebra Applications I.Homogeneous Linear Equations II.Non-homogeneous equation III.Eigen value problem.
Day 1 Eigenvalues and Eigenvectors
Day 1 Eigenvalues and Eigenvectors
Therorem 1: Under what conditions a given matrix is diagonalizable ??? Jordan Block REMARK: Not all nxn matrices are diagonalizable A similar to (close.
Sec 3.5 Inverses of Matrices Where A is nxn Finding the inverse of A: Seq or row operations.
Linear algebra: matrix Eigen-value Problems
Domain Range definition: T is a linear transformation, EIGENVECTOR EIGENVALUE.
Computing Eigen Information for Small Matrices The eigen equation can be rearranged as follows: Ax = x  Ax = I n x  Ax - I n x = 0  (A - I n )x = 0.
Eigenvectors and Linear Transformations Recall the definition of similar matrices: Let A and C be n  n matrices. We say that A is similar to C in case.
Interarea Oscillations Starrett Mini-Lecture #5. Interarea Oscillations - Linear or Nonlinear? l Mostly studied as a linear phenomenon l More evidence.
Eigenvalues The eigenvalue problem is to determine the nontrivial solutions of the equation Ax= x where A is an n-by-n matrix, x is a length n column.
State space model: linear: or in some text: where: u: input y: output x: state vector A, B, C, D are const matrices.
5.1 Eigenvectors and Eigenvalues 5. Eigenvalues and Eigenvectors.
Similar diagonalization of real symmetric matrix
State space model: linear: or in some text: where: u: input y: output x: state vector A, B, C, D are const matrices.
Reduced echelon form Matrix equations Null space Range Determinant Invertibility Similar matrices Eigenvalues Eigenvectors Diagonabilty Power.
Characteristic Polynomial Hung-yi Lee. Outline Last lecture: Given eigenvalues, we know how to find eigenvectors or eigenspaces Check eigenvalues This.
Eigenvalues, Zeros and Poles
Chapter 6 Eigenvalues and Eigenvectors
Systems of Differential Equations Phase Plane Analysis
Introduction The central problems of Linear Algebra are to study the properties of matrices and to investigate the solutions of systems of linear equations.
Review of Linear Algebra
ISHIK UNIVERSITY FACULTY OF EDUCATION Mathematics Education Department
CS479/679 Pattern Recognition Dr. George Bebis
Jordan Block Under what conditions a given matrix is diagonalizable ??? Therorem 1: REMARK: Not all nxn matrices are diagonalizable A similar to.
EIGEN … THINGS (values, vectors, spaces … )
Section 4.1 Eigenvalues and Eigenvectors
Euclidean Inner Product on Rn
DC Motor Driving an Inertial Load
DC Motor Driving an Inertial Load
Final value theorem Conditions: f(t) is finite and converges
Eigenvalues and Eigenvectors
Some useful linear algebra
CS485/685 Computer Vision Dr. George Bebis
Digital Control Systems
Stability BIBO stability:
Eigenvalues and Eigenvectors
Equivalent State Equations
State transition matrix: eAt
DC Motor Driving an Inertial Load
State space model: linear: or in some text: where: u: input y: output
State space model: linear: or in some text: where: u: input y: output
Linear Algebra Lecture 32.
EIGENVECTORS AND EIGENVALUES
Linear Algebra Lecture 29.
Chapter 5 Eigenvalues and Eigenvectors
RAYAT SHIKSHAN SANSTHA’S S.M.JOSHI COLLEGE HADAPSAR, PUNE
Sec 3.5 Inverses of Matrices
Homogeneous Linear Systems
Eigenvalues and Eigenvectors
Linear Algebra Lecture 35.
Eigenvalues and Eigenvectors
Subject :- Applied Mathematics
Linear Algebra: Matrix Eigenvalue Problems – Part 2
Eigenvalues and Eigenvectors
Symmetric Matrices and Quadratic Forms
Lin. indep eigenvectors One single eigenvector
Presentation transcript:

State space model State space model: linear: where: u: input y: output x: state vector A,B,C,D, or F,G,H,J are const matrices If dim(x) = n, we say system order = n A is nxn matrix, called system matrix System property largely determined by properies of A.

State transition matrix: eAt eAt is an nxn matrix eAt =ℒ-1((sI-A)-1), or ℒ (eAt)=(sI-A)-1 eAt= AeAt= eAtA eAt = Inxn+At+ A2t2+ A3t3 + eAt is invertible: (eAt)-1= e(-A)t eA0=I eAt1 eAt2= eA(t1+t2) def

Example

Example

I/O model to state space Infinite many solutions, all equivalent. Controller canonical form:

Example n=4 a3 a2 a1 a0 b1 b0=b2=b3=0

>> n=[1 2 3];d=[1 4 5 6]; >> [A,B,C,D]=tf2ss(n,d) A = -4 -5 -6 1 0 0 0 1 0 B = 1 C = 1 2 3 D = >> tf(n,d) Transfer function: s^2 + 2 s + 3 --------------------- s^3 + 4 s^2 + 5 s + 6

Characteristic values Char. eq of a system is det(sI-A)=0 the polynomial det(sI-A) is called char. pol. the roots of char. eq. are char. values they are also the eigen-values of A e.g. ∴ (s+1)(s+2)2 is the char. pol. (s+1)(s+2)2=0 is the char. eq. s1=-1,s2=-2,s3=-2 are char. values or eigenvalues

can ? set t=0 ∴No can ? √ at t=0: ? √

Solution of state space model Recall: sX(s)-x(0)=AX(s)+BU(s) (sI-A)X(s)=BU(s)+x(0) X(s)=(sI-A)-1BU(s)+(sI-A)-1x(0) x(t)=(ℒ-1(sI-A)-1))*Bu(t)+ ℒ-1(sI-A)-1) x(0) x(t)= eA(t-τ)Bu(τ)d τ+eAtx(0) y(t)= CeA(t-τ)Bu(τ)d τ+CeAtx(0)+Du(t)

S.S to T.F. X(s)=(sI-A)-1BU(s) Y(s)=C(sI-A)-1BU(s)+DU(s) =(D+ C(sI-A)-1B)U(s) ∴ T.F. H(s)= D+ C(sI-A)-1B In matlab: ss2tf eig roots poly use help to find out how to use these

In Matlab: >> A=[0 1;-2 -3]; >> B=[0;1]; >> C=[1 3]; >> D=[0]; >> [n,d]=ss2tf(A,B,C,D) n = 0 3.0000 1.0000 d = 1 3 2 >>tf(n,d)

But don’t use those for hand calculation use:X(s)=(sI-A)-1BU(s)+(sI-A)-1x(0) x(t)=ℒ-1{(sI-A)-1BU(s)}+{ℒ-1 (sI-A)-1} x(0) & Y(s)=C(sI-A)-1BU(s)+DU(s)+C(sI-A)-1x(0) y(t)= ℒ-1{C(sI-A)-1BU(s)+DU(s)}+C{ℒ-1 (sI-A)-1} x(0) e.g. u= unit step

Note: T.F.=D+ C(sI-A)-1B

Eigenvalues, eigenvectors Given a nxn square matrix A, p is an eigenvector of A if Ap∝p i.e. λ s.t. Ap= λp λis an eigenvalue of A Example: , Let , ∴p1 is an e-vector, & the e-value=1 ∴p2 is also an e-vector, assoc. with the λ =-2

In Matlab >> A=[2 0 1; 0 2 1; 1 1 4]; >> [P,D]=eig(A) 0.6280 -0.7071 0.3251 -0.4597 -0.0000 0.8881 p1 p2 p3 D =1.2679 0 0 0 2.0000 0 0 0 4.7321 λ1 λ2 λ3

If we use [P,D]=eig(A) get approximate but wrong answer Should use: >>[P,J]=jordan(A) P = 0.3750 0 1 0.625 0 8 4 0 -0.375 0 0 0.375 0 16 9 0 J= -8 0 0 0 0 -16 1 0 0 0 -16 1 0 0 0 -16 a 3x3 Jordan block assoc. w/. λ=-16

In general, if λ, P is an e-pair for A, AP= λP λP-AP=0 λIP-AP=0 (λI-A)P=0 ∵ P≠0 ∴ det(λI-A)=0 ∴ λ is a sol. of char. eq of A char. pol. of nxn A has deg=n ∴ A has n eigen-values. e.g. A= , det(λI-A)=(λ-1)(λ+2)=0 ⇒ λ1=1, λ2=-2

If λ1 ≠λ2 ≠λ3⋯ then the corresponding P1, P2, ⋯ will be linearly independent, i.e., the matrix P=[P1⋮P2 ⋮ ⋯Pn] will be invertible. AP1= λ1P1 AP2= λ2P2 ⋮ A[P1⋮P2 ⋮ ⋯]=[AP1⋮AP2 ⋮ ⋯] =[λ P1⋮ λ P2 ⋮ ⋯] =[P1 P2 ⋯]

∴ AP=PΛ P-1AP= Λ=diag(λ1, λ2, ⋯) ∴If A has n lin. ind. Eigenvectors then A can be diagonalized. Note: Not all square matrices can be diagonalized.

If A does not have n lin. ind. e-vectors (some of the eigenvalues are identical), then A can not be diagonalized E.g. A= det(λI-A)= λ4+56λ3+1152λ2+10240λ+32768 λ1=-8 λ2=-16 λ3=-16 λ4=-16 by solving (λI-A)P=0