Heat load at the ILC positron target and collimator system

Slides:



Advertisements
Similar presentations
Photon Collimation For The ILC Positron Target Lei Zang The University of Liverpool Cockcroft Institute 24 th March 2007.
Advertisements

Simulations with ‘Realistic’ Photon Spectra Mike Jenkins Lancaster University and The Cockcroft Institute.
ILC Electron and Positron Sources Wei Gai for the ILC e- and e+ collaboration PAC review, 2012 KEK, Japan.
Collimator Damage Adriana Bungau The University of Manchester Cockcroft Institute “All Hands Meeting”, January 2006.
Overview of 300 Hz Conventional e + Source for ILC Truly Conventional Collaboration ANL, IHEP, Hiroshima U, U of Tokyo, KEK, DESY, U of Hamburg NIM A672.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
E166 “Polarized Positrons for Future Linear Colliders” John C. Sheppard E166 Co-spokesman SLAC: August 31, 2004.
K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on.
Status of Undulator-based Positron Source Baseline Design Leo Jenner, but based largely on a talk given by Jim Clarke to Positron DESY-Zeuthen,
Simulation on ILC undulator based source with liquid lead target Wanming Liu ANL.
Radiation Cooling of the ILC positron target LCWS 2014, Belgrade, Serbia 7 th October 2014 Sabine Riemann, DESY, Peter Sievers, CERN/ESS, Andriy Ushakov,
Undulator Based ILC Positron Source Studies Wei Gai Argonne National Laboratory CCAST ILC Accelerator Workshop Beijing, Nov 5 – 7, 2007.
Design of the Photon Collimators for the ILC Positron Helical Undulator Adriana Bungau The University of Manchester Positron Source Meeting, July 2008.
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Helical Undulator Based Positron Source for LC Wanming Liu 05/29/2013.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Status: Cooling of the ILC e+ target by thermal radiation POSIPOL 2015, Cockroft Institute, Daresbury, UK 2 nd September 2015 Felix Dietrich (DESY), Sabine.
ILC undulator based RDR e+ source: Yields and Polarizations for QWT capturing and different drive beam energy: Wei Gai, Wanming Liu Argonne National Lab.,
WG3a Sources Summary Jim Clarke on behalf of John Sheppard, Masao Kuriki, Philippe Piot and all the contributors to WG3a.
Key luminosity issues of the positron source Wei Gai.
Summary: Injector systems May 31 st, 2013 W. Gai (ANL), M. Kuriki (KEK), Y. Papaphilippou (CERN), S. Riemann (DESY)
Felix Dietrich | AWLC14 | | Stress simulation in the ILC positron target with ANSYS Felix Dietrich (TH-Wildau), Sabine Riemann, Friedrich Staufenbiel.
Positron Source General Update M. Kuriki(Hiroshima U./KEK) ALCW2015, April 2015,Tsukuba/Tokyo, Japan.
Status of target and photon collimator work for polarized e+ LCWS 2014, Belgrade, Serbia 7 th October 2014 Sabine Riemann, Friedrich Staufenbiel, DESY.
Update on ILC Positron source study at ANL since the Durham/UK Meeting10/2010 Wan-Ming Liu, Wei Gai.
Current standing of the undulator based ILC positron source Wei Gai AWLC 14 FNAL, May
Development of a Positron Production Target for the ILC Positron Source Capture Optics Positron beam pipe/ NC rf cavity Target wheel Vacuum feedthrough.
Consideration of Baffle cooling scheme
Radiation Cooling of the ILC positron target ALCW 2015, KEK, Tsukuba, Japan 24 th April 2015 Felix Dietrich (DESY), Sabine Riemann (DESY), Peter Sievers.
Heat load of the radiation cooled Ti target of the undulator based e+ source Felix Dietrich (DESY, TH-Wildau),Sabine Riemann(DESY), Andriy Ushakov(U- Hamburg),
Spin Control and Transportation O. Adeyemi*, M. Beckmann**, V. Kovalenko*, L. Malysheva*, G. Moortgat-Pick*, S. Riemann**, A. Schälicke**, A. Ushakov**
Felix Dietrich | LCWS 2014 | | Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel.
Undulator Based ILC Positron Source Parameters Wei Gai ANL ALLCPG 2011 March 20, 2011,
A Report from PosiPol2015 to AD&I meeting (10 Sep. 2015) Masao KURIKI (Hiroshima University)
Polarized positrons at the ILC: physics goal and source requirements EuCARD Workshop “Spin optimization at lepton accelerators” 13 February 2014 Sabine.
A.Variola LCWS Bejing ERL Compton Scheme Status of the Orsay activity.
Ian Bailey Cockcroft Institute/ Lancaster University IWLC October 21 st, 2010 Overview of Undulator-Based Sources for LC.
Overview of 300 Hz Conventional e + Source for ILC T. Omori (KEK) 29-May-2013 ECFA LC Workshop at DESY Truly Conventional Collaboration ANL, IHEP, Hiroshima.
Undulator based polarized positron source for Circular electron-positron colliders Wei Gai Tsinghua University/ANL a seminar for IHEP, 4/8/2015.
Status: Cooling of the ILC e+ target by thermal radiation LCWS 2015, Whistler, Canada 3 rd November 2015 Felix Dietrich (DESY), Sabine Riemann (DESY),
POSIPOL 2015 International Positron Source Workshop 2-4 September 2015 Cockroft Institute, UK Sabine Riemann (DESY)
F.Staufenbiel / EuCARD 2 / Heat load and stress studies of the ILC collimator G. Moortgat-Pick 1;2 S. Riemann 2, F. Staufenbiel 2, A. Ushakov.
Target studies for the ILC 300 Hz conventional e + source 29-May-2013 ECFA LC Workshop at DESY T. Omori Target study team: K. Yokoya (KEK), J. Urakawa.
Undulator Based ILC positron source for TeV energy Wanming Liu Wei Gai ANL April 20, 2011.
Positron polarization at the ILC: RDR vs. SB2009 Sabine Riemann, DESY Zeuthen International Workshop on Linear Colliders 2010, Geneva October 25-29, 2010.
Positron Source for Linear Collider Wanming Liu 2013 DOE Review.
ILC Undulator Based Position Source Target System Wei Gai, HEP, ANL TB meeting 8/5/2014.
Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1.
Positron Source for Linear Collider Wanming Liu 04/11/2013.
Photon Collimator and Conversion Target Status I. Bailey University of Liverpool / Cockcroft Institiute Cockcroft Institiute.
1 Positron Source Configuration Masao KURIKI ILC AG meeting at KEK, 2006 Jan. Positron Source Configuration KURIKI Masao and John Sheppard  BCD Description.
AD&I Meeting 23/6/10 Jim Clarke
POSIPOL 2016 at LAL/Paris, Sept Peter Sievers-CERN
A Positron Target Concept for the ILC
Status: Cooling of the ILC e+ target
Comparison of Undulator and e-Driven Schemes
Positron production rate vs incident electron beam energy for a tungsten target
The ILC positron source target using cooling by thermal radiation
ILC RDR baseline schematic (2007 IHEP meeting)
Undulator based e+ source: “Staging” Mini-Workshop
Cooling by thermal radiation
CLIC Undulator Option for Polarised Positrons
ILC RDR baseline schematic (2007 IHEP meeting)
Helical Undulator Insertion Device The heLiCal collaboration
E166 - LEPOL - Low Energy Positron Polarimetry for the ILC
Summary for the Sources working group
CEPC Injector positron source
Positron Working Group Status
CMS vacuum chamber. Geometry for wakefield calculations
CEPC Injector positron source
Presentation transcript:

Heat load at the ILC positron target and collimator system O. S. Adeyemi1, V. Kovalenko1, G. Moortgat-Pick1;2 L. Malysheva1, S. Riemann2, F. Staufenbiel2, A. Ushakov1 1University of Hamburg 2DESY - methods for positron production - temperature simulations in a photon collimator system - temperature simulations in the ILC positron target region - conclusion F.Staufenbiel / 15.7.11 / 2.LC Forum

what we want to have ! 2*1010 e+ /bunch at IP polarised positron production what we want to have ! 2*1010 e+ /bunch at IP 2625 bunch /train (0.97ms) 5 train /s photon source e+ polarisation possible conventional source no e+ polarisation! F.Staufenbiel / 15.7.11 / 2.LC Forum

what we want to have ! 2*1010 e+ /bunch at IP polarised positron production what we want to have ! 2*1010 e+ /bunch at IP 2625 bunch /train (0.97ms) 5 train /s F.Staufenbiel / 15.7.11 / 2.LC Forum

collimator polarised positron production Pe+ Yield [e+/e-] no collimator 27 % 4.4 (100%) 2 mm 35 % 4.0 (91%) 1.4 mm 47 % 3.2 (73%) 1.0 mm 60 % 2.2 (50%) F.Staufenbiel / 15.7.11 / 2.LC Forum

250 GeV e- modelling the ILC-target unit 2*1010 e- / bunch = 3.2 nC / bunch 2625 bunch / train (0.97ms) = 2.7062 MHz repetition rate 5 train / s -> 4.6*1015 photon / train Titan target for polarised positron production r ~ 14.4 MeV e+ 250 GeV e- ~ 28.8 MeV photon beam distribution of heat load !! helical undulator r = 1 m vrim = 100 m/s ( 955 rpm = 15.9Hz ) F.Staufenbiel / 15.7.11 / 2.LC Forum

modelling the ILC-target unit flux concentrator beam pipe vacuum seal bearing motor chamber ~ 28.8 MeV photon beam d1 = 1.0 cm , l1 = 5.0 cm d2 = 5.0 cm , l2 = 3.0 cm d3 = 8.0 cm , l3 = 12.5 cm F.Staufenbiel / 15.7.11 / 2.LC Forum

~ C W this is to much !! TW = 1800 K / train D Q m cv flux concentrator beam pipe vacuum seal bearing motor chamber collimator ~ 28.8 MeV photon beam r = 0.1 cm -> _____ K / train 14 000 ??? this is to much !! F.Staufenbiel / 15.7.11 / 2.LC Forum

but this is still to much !! C Ti W modelling the collimator r = 0.1 cm D TTi 1300 K / train ~ D TW 3600 K / train D TC 500 K / train but this is still to much !! F.Staufenbiel / 15.7.11 / 2.LC Forum

C Ti Fe W C Ti W C Ti Fe W modelling the collimator r = 0.1 cm z = 1.2 m D TTi 1300 K / train ~ D TFe 600 K / train D TW 900 K / train D TC 500 K / train -> 40 K / train -> 20 K / train D TW 3600 K / train ~ F.Staufenbiel / 15.7.11 / 2.LC Forum

C Ti modelling the collimator r = 0.1 cm z = 1.2 m D TC 500 K / train D TTi 1300 K / train ~ D TFe 600 K / train D TW 900 K / train D TC 500 K / train -> 200 K / train z = 4.0 m -> 40 K / train -> 20 K / train F.Staufenbiel / 15.7.11 / 2.LC Forum

C Ti Fe W modelling the collimator l = r – r0 . lC A DT QC = l . 300K r = 0.1 cm z = 1.2 m D TTi 1300 K / train ~ D TFe 600 K / train D TW 900 K / train D TC 500 K / train -> 200 K / train -> 40 K / train -> 20 K / train QC = lC A DT l . l : heat conduction coefficient [W/m/K] Azyl : mean girthed area of the collimator [m2] l : heat conduction path length [m] DT : difference in temperature [K] Q : heat current . F.Staufenbiel / 15.7.11 / 2.LC Forum

lC 2p ( r-r0 ) z DT = ln( r / r0 ) modelling the collimator . . z = 1.0 cm r = 0.1 cm QC = lC A DT l . lC 2p ( r-r0 ) z DT ln( r / r0 ) zyl. = l : heat conduction coefficient [W/m/K] Azyl : mean girthed area of the collimator [m2] l : heat conduction path length [m] DT : difference in temperature [K] Q : heat current . F.Staufenbiel / 15.7.11 / 2.LC Forum

a b c d modelling the flux concentrator 2.0 cm m b s d1 = 1.0 cm , l1 = 5.0 cm d2 = 5.0 cm , l2 = 3.0 cm d3 = 8.0 cm , l3 = 12.5 cm F.Staufenbiel / 15.7.11 / 2.LC Forum

~ - QTi target 6 kW / train ~ 130 K / train | 2.0 cm POSITRON beam vrim = 100 m/s -> 50 pulses hits in the same position 1.5 cm tungsten collimator for flux concentrator F.Staufenbiel / 15.7.11 / 2.LC Forum

~ ~ ~ ~ - QTi target 6 kW / train - QW colli 115 kW / train - ~ 50 K / train | ~ 80 K / train | ~ 320 K / train | flux concentrator ~ 6 kW / train QTi target - ~ 115 kW / train QW colli - ~ 20 kW / train Qflux con+W - tungsten collimator for flux concentrator ~ 100 kW / train Qflux con-W - F.Staufenbiel / 15.7.11 / 2.LC Forum

Conclusion C Ti Fe W C Ti C Ti W C Ti Fe W -> - heat loads (temperatures) for different collimator designs are simulated -> transfered in manageable regions C Ti Fe W C Ti C Ti W C Ti Fe W -> - heat load in the target and flux concentrator are simulated temperature power target 80 K/train 6 kW/train flux concentrator - Wcolli 115 kW/train flux concentrator + Wcolli 50 K/train 20 kW/train Wcollimator 320 K/train 100 kW/train F.Staufenbiel / 15.7.11 / 2.LC Forum

Conclusion - heat loads (temperatures) for different collimator designs are simulated -> transfered in manageable regions - heat load in the target and flux concentrator are simulated temperature power target 80 K/train 6 kW/train flux concentrator - Wcolli 115 kW/train flux concentrator + Wcolli 50 K/train 20 kW/train Wcollimator 320 K/train 100 kW/train - what is now to do ? -> heat evolution studies in the single components + induced mechanical stress due to heat evolution facilitate by ANSYS simulation software F.Staufenbiel / 15.7.11 / 2.LC Forum