6.1 Digestion and absorption

Slides:



Advertisements
Similar presentations
H3 Absorption of digested foods
Advertisements

Assessment Statements H.3.1 Draw and label a diagram showing a transverse section of the ileum as seen under a light microscope. H.3.2 Explain the structural.
Revision for Mid year Examination
Glenlola Collegiate School
Digestive System. Molecules DNA molecules Atoms Organ systems Cells nerve cell Tissues leaf tissues cardiac tissue Organisms tree human Organs leaf stem.
Nutrition in Man. Let’s Recap! What are the 3 parts of the small intestine? What are the 3 secretions found in the duodenum? Are you able to recall what.
Digestive System Parts and Function. Digestion All organisms are composed of four complex biological molecules: lipids (or fats), proteins, carbohydrates,
Topic 6.1: Digestion.
6.1 Digestion Topic 6: Human health & physiology.
Digestive Enzymes By Serena (Xu Ruijia).
Absorption is the uptake of digested
Human Digestion Topic 6.1 pg 67.
Digestion. Starter Quiz Interactive quiz 1 Assessment objectives Explain why digestion of large food molecules is essential Explain the.
What happens where? STARCH to MALTOSESALIVARY AMYLASE REACTANT/PRODUCTENZYME PROTEINS to PEPTIDES LIPASE Chymo/trypsin LIPIDS to FAs & GLYCEROL PROTEINS.
The Digestive System of Man.
Digestion (Core) Stephen Taylor i-Biology.net.
Topic 6.1 – Digestion & Absorption
How it works!. Enzymes are necessary Biological catalysts – globular proteins which will increase reaction rates due to the lowering of activation energy.
Digestion From food to poo Crash Course VIDEO: Pieces of food Chemical.
Digestive System Topic 6 – Human Anatomy and Physiology Van Roekel – IB Biology 2.
Absorption in the Small Intestines. IB Assessment Statement H.3.1 Draw and label a diagram showing a transverse section of the ileum as seen under a light.
DIGESTION & ABSORPTION 6.1
Alimentary tract. The four main roles of digestive system.
What is absorption? The digested food molecules enter the circulatory system.
Objectives: 1.Label the gross structure of the digestive system 2.List the basic units produced by the digestion of the three macromolecules 3. State.
Topic 6.1 Digestion. TOPIC 6.1 DIGESTION The structure of the wall of the small intestine allows it to move, digest and absorb food.
6.1 Digestion and absorption
ages/small_intestine.jpg
Human alimentary canal Section II Structures and functions in living organisms.
IB Biology Review Digestive System. What are the components of the human digestive system? Mouth Salivary glands Esophagus Stomach Small intestine Liver.
Biology IGCSE Food and Digestion. Enzymes
6.1 Digestion Readings IB Pg Overview: The Need to Feed Heterotrophs –dependent on a regular supply of food Animals fall into three categories:
DIGESTION 6.1. The Process Transport The circulatory system delivers the small molecules to cells around your body. Absorption Small molecules are absorbed.
Topic 6: Human Health and Physiology 6.1 Digestion.
 The contraction of circular and longitudinal muscle layers of the small intestine mixes the food with enzymes and moves it along the gut  The pancreas.
DIGESTION © 2016 Paul Billiet ODWS.
Human Health & Physiology Digestion 6.1
Digestion IB Core Topic V.
6.1 Digestion and absorption
Digestion.
6.1: Digestion & absorption
6.1 Digestion and absorption
Food enters the small intestine from…
(b) Animal Transport and Exchange Systems
What gets digested?? Complete the table…. Macromolecule Monomers Starch/glycogen Fatty acids & glycerol Nucleic acids (DNA/RNA) Amino acids Cellulose.
Absorption is the uptake of digested
Topic 6.1~ Digestion and Absorption.
Enzymes and the digestive system
Digestion.
6.1 - Digestion.
6.1 Digestion and Absorption
6.1 Digestion and Absorption
Agenda 1/5 and 1/8 Digestion System Notes Practice Diagram
The Major Biomolecules
Topic 6: Human Health and Physiology
6.1 - Digestion.
Digestive System Parts and Function.
The Digestive System Part 2.
Digestion.
DIGESTION Topic 6.1 IB Biology Miss Werba.
Topic 6 Human Physiology
Small Intestine and Large Intestine
6.1 Digestion and Absorption
TOPIC 6.1 Digestion.
Standard 4.1 Explain generally how the digestive system converts macromolecules from food into smaller molecules that can be used by cells for energy and.
Where does digestion begin?
6.1 – Digestion.
Digestion Topic 6.1 (modified for 2016 exam).
6.1 Digestion and Absorption Applications: Processes occurring in the small intestine that result in the digestion of starch and the transport of.
Presentation transcript:

6.1 Digestion and absorption 1. Low power light microscope image: cross section of the ileum shows both the folded nature of the inner wall and the outer muscular layers helping to food along and increasing the surface area in contact with digested food. 2. Magnification increased: intricate folded nature of the walls becomes clear. http://medcell.med.yale.edu/systems_cell_biology_old/gi/images/small_intestine.jpg 3. Magnification increased further: an individual villus can be distinguished. The specialised cells are key in both the processes of digestion and absorption, e.g. goblet cells secrete enzymes into the lumen. http://medcell.med.yale.edu/systems_cell_biology_old/gi/images/ileum.jpg Essential idea: The structure of the wall of the small intestine allows it to move, digest and absorb food. 4. An electron micrograph at very higher magnification: the microvilli on the surface of a single villus can be seen, they further increase the surface area available for absorption. http://medcell.med.yale.edu/systems_cell_biology_old/gi/images/villus.jpg By Chris Paine https://bioknowledgy.weebly.com/ http://www.cals.ncsu.edu/course/zo250/brush_border.gif

Understandings Statement Guidance The contraction of circular and longitudinal muscle of the small intestine mixes the food with enzymes and moves it along the gut. 6.1.U2 The pancreas secretes enzymes into the lumen of the small intestine. Students should know that amylase, lipase and an endopeptidase are secreted by the pancreas. The name trypsin and the method used to activate it are not required. 6.1.U3 Enzymes digest most macromolecules in food into monomers in the small intestine. Students should know that starch, glycogen, lipids and nucleic acids are digested into monomers and that cellulose remains undigested. 6.1.U4 Villi increase the surface area of epithelium over which absorption is carried out. 6.1.U5 Villi absorb monomers formed by digestion as well as mineral ions and vitamins. 6.1.U6 Different methods of membrane transport are required to absorb different nutrients.

Applications and Skills Statement Guidance 6.1.A1 Processes occurring in the small intestine that result in the digestion of starch and transport of the products of digestion to the liver. 6.1.A2 Use of dialysis tubing to model absorption of digested food in the intestine. 6.1.S1 Production of an annotated diagram of the digestive system. 6.1.S2 Identification of tissue layers in transverse sections of the small intestine viewed with a microscope or in a micrograph. Tissue layers should include longitudinal and circular muscles, mucosa and epithelium.

6.1.S1 Production of an annotated diagram of the digestive system. Use the animation and video to learn about the digestive system and how to draw it. https://youtu.be/Nm-pT7fk6gs http://highered.mheducation.com/sites/0072495855/student_view0/chapter26/animation__organs_of_digestion.html

6.1.S1 Production of an annotated diagram of the digestive system. Plus add in the accessory organs: the gall bladder, liver and pancreas.

6.1.S1 Production of an annotated diagram of the digestive system.

Now add the annotations to show what happens in digestion. 6.1.S1 Production of an annotated diagram of the digestive system. Now add the annotations to show what happens in digestion.

Peristalsis moves food through the alimentary canal 6.1.U1 The contraction of circular and longitudinal muscle of the small intestine mixes the food with enzymes and moves it along the gut. Peristalsis moves food through the alimentary canal Contraction of longitudinal muscle expand the lumen in front of the food giving it space to move into. Contraction of circular muscles behind the food propels it forwards. http://www.bbc.co.uk/schools/gcsebitesize/science/add_edexcel/common_systems/digestionrev2.shtml In the small intestine peristalsis also mixes food with enzymes and forces the products of digesiton into contact with the wall of the intestine Therefore in the intestines the food is moved very slowly to allow time for digestion. n.b. The contractions are controlled unconsciously by the enteric nervous system http://www.austincc.edu/rfofi/NursingRvw/NursingPics/DigestivePics/Picture4.jpg

6.1.U3 Enzymes digest most macromolecules in food into monomers in the small intestine.

Review: 2.5.U1 Enzymes have an active site to which specific substrates bind. AND 2.5.U2 Enzyme catalysis involves molecular motion and the collision of substrates with the active site. Enzyme: A globular protein that increases the rate of a biochemical reaction by lowering the activation energy threshold (i.e. a biological catalyst) Use the animation to find out more about enzymes and how they work. A good alternative is How Enzymes Work from McGraw and Hill http://highered.mheducation.com/sites/0072495855/student_view0/chapter2/animation__how_enzymes_work.html http://www.northland.cc.mn.us/biology/biology1111/animations/enzyme.swf

6.1.U3 Enzymes digest most macromolecules in food into monomers in the small intestine.

Human Digestive Enzymes 6.1.U3 Enzymes digest most macromolecules in food into monomers in the small intestine. Human Digestive Enzymes Remember: enzymes are specific to their substrates and each enzyme has its own optimum pH. Three main types of enzymes in human digestion: Amylases break down carbohydrates Example: salivary amylase Substrate: starch Product: maltose Source: mouth (salivary glands) Optimum pH: 7-7.8 Proteases break down polypeptides Example: pepsin Substrate: polypeptides Product: amino acids Source: stomach Optimum pH: 2 Lipases break down fats and lipids Example: pancreatic lipase Substrate: triglycerides Product: fatty acids & glycerol Source: pancreas, delivered into small intestine Optimum pH: 7.2 - 7.5 diagram from: http://www.teachervision.fen.com/digestive-system/printable/57730.html

The pancreas synthesises the three main types of digestive enzyme: 6.1.U2 The pancreas secretes enzymes into the lumen of the small intestine. The pancreas synthesises the three main types of digestive enzyme: amylase to digest carbohydrates, e.g. starch lipases to digest lipids, e.g. triglycerides proteases to digest polypeptides Pancreatic juice containing the enzymes is released into the upper region of the small intestine (duodenum) via the pancreatic duct The small intestine is where the final stages of digestion occur. https://commons.wikimedia.org/wiki/File:Diagram_showing_the_position_of_the_pancreas_CRUK_356.svg

6.1.S2 Identification of tissue layers in transverse sections of the small intestine viewed with a microscope or in a micrograph. The small intestine contains four distinct tissue layers from the lumen Mucosa – inner lining, includes villi Submucosa – connective tissue (between the mucosa and muscle) Muscular layer – inner circular and outer longitudinal muscle perform peristalsis Serosa – protective outer layer Epithelial cells – single outer layer of cells on each villus (see 6.1.U4) Muscular layer circular longitudinal http://www.dartmouth.edu/~anatomy/Histo/lab_5/GI/DMS132/popup.html

Adaptations to Absorption 6.1.U4 Villi increase the surface area of epithelium over which absorption is carried out. Adaptations to Absorption Getting digested food molecules into the blood from the lumen of the ileum. Many villi protrude into the lumen, greatly increasing the surface area for absorption. Single-cell layer of epithelial cells Short path for diffusion. Microvilli on the surface of each cell increase surface area even further. Lacteals (lymph vessels) Allow for rapid absorption and transport of lipids. Capillaries close to epithelium Short path for diffusion, rich supply of blood. Rich blood supply Maintains concentration gradients between lumen and blood. Images from: http://en.wikipedia.org/wiki/Intestinal_villi

amino acids, fatty acids & glycerol) are absorbed by the villi 6.1.U5 Villi absorb monomers formed by digestion as well as mineral ions and vitamins. https://youtu.be/P1sDOJM65Bc Along with vitamins and minerals all products of digestion (monosaccharides, amino acids, fatty acids & glycerol) are absorbed by the villi

6.1.U6 Different methods of membrane transport are required to absorb different nutrients. How is membrane transport involved in absorption of nutrients from the small intestine? Method of transport Nutrients Outline Simple diffusion Lipids Fructose, vitamins Water-soluble (hydrophilic) molecules use channel proteins to pass phospholipid bilayer and enter the epithelial cells (down the concentration gradient) Active Transport Endocytosis (Pinocytosis) Antibodies from breast milk

6.1.U6 Different methods of membrane transport are required to absorb different nutrients. How is membrane transport involved in absorption of nutrients from the small intestine? Method of transport Nutrients Outline Simple diffusion Lipids Lipids are non-polar and therefore can pass freely through hydrophobic core of the plasma membrane into the epithelial cells (down the concentration gradient ) Facilitated Diffusion Fructose, vitamins Water-soluble (hydrophilic) molecules use channel proteins to pass phospholipid bilayer and enter the epithelial cells (down the concentration gradient) Active Transport Glucose, amino acids and mineral ions Protein pumps use ATP to move molecules against the concentration gradient into the epithelial cells Endocytosis (Pinocytosis) Antibodies from breast milk The plasma membrane folds inward to form vesicles to absorb larger molecules without digesting them

6.1.A1 Processes occurring in the small intestine that result in the digestion of starch and transport of the products of digestion to the liver. Starch consists of amylose (by 1,4 bonds) and amylopectin (by 1,4 bonds and occasional by 1,6 bonds) Amylase breaks 1,4 bonds in chains of four or more monomers producing maltose Maltase digests maltose into glucose monomers Dextrinase breaks the 1,6 bonds that amylase cannot deal with forming glucose monomers http://etravelweek.com/hmattachments/1_200907180843167cXQr.gif

6.1.A1 Processes occurring in the small intestine that result in the digestion of starch and transport of the products of digestion to the liver. The digested glucose is absorbed and then transported to various body tissues Glucose is co-transported* with sodium ions into the epithelial cells (of the villus). Glucose moves by facilitated diffusion into the lumen of the villus. Glucose then diffuses a short distance into the adjacent capillaries where it dissolves into the blood plasma. Blood in the capillaries moves to to venules then to the hepatic portal vein which transports the glucose to the liver. The liver absorbs excess glucose which it converts to glycogen for storage. Extension: co-transport of glucose is a form of active transport. Explain why using the diagram above. http://www.rpi.edu/dept/chem-eng/Biotech-Environ/Membranes/bauerp/co.gif

Dialysis (visking) tubing can be used to model absorption 6.1.A2 Use of dialysis tubing to model absorption of digested food in the intestine. Dialysis (visking) tubing can be used to model absorption The tubing is semi-permeable and contains pores typically ranging 1 – 10 nm in diameter Predict what will happen to the glucose and starch after 15 minutes. Initially contains a mixture of starch and glucose Test the solutions inside and outside the dialysis tubing for starch and glucose before and after at least 15 minutes have elapsed (see the Practical Biology link for details). http://www.nuffieldfoundation.org/practical-biology/evaluating-visking-tubing-model-gut

Dialysis (visking) tubing can be used to model absorption Nature of Science: Use models as representations of the real world - dialysis tubing can be used to model absorption in the intestine. (1.10) Dialysis (visking) tubing can be used to model absorption The tubing is semi-permeable and contains pores typically ranging 1 – 10 nm in diameter Predict what will happen to the glucose and starch after 15 minutes. The model is the most basic element of the scientific method. It is any simplification, substitute or stand-in for what you are actually studying or trying to predict. Evaluate the usefulness of dialysis tubing as a model for absorption by considering: How is the function of dialysis tubing similar to the small intestine? What features of a real gut are missing from this model? Initially contains a mixture of starch and glucose Test the solutions inside and outside the dialysis tubing for starch and glucose before and after at least 15 minutes have elapsed (see the Practical Biology link for details). http://www.nuffieldfoundation.org/practical-biology/evaluating-visking-tubing-model-gut