MOMENT ABOUT AN AXIS (Section 4.5)

Slides:



Advertisements
Similar presentations
MOMENT OF A COUPLE (Section 4.6)
Advertisements

Forces and Moments MET 2214 Ok. Lets get started.
MOMENT OF A FORCE (SCALAR FORMULATION), CROSS PRODUCT, MOMENT OF A FORCE (VECTOR FORMULATION), & PRINCIPLE OF MOMENTS Today’s Objectives : Students will.
MOMENT OF A FORCE (Section 4.1)
READING QUIZ The moment of a force about a specified axis can be determined using ___. A) a scalar analysis only B) a vector analysis only C) either a.
DOT PRODUCT (Section 2.9) Today’s Objective:
MOMENT ABOUT AN AXIS Today’s Objectives:
MOMENT AND COUPLES.
MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS Today’s Objectives : Students will be.
EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM Today’s Objectives: Students will be able.
4.6 Moment due to Force Couples
POSITION VECTORS & FORCE VECTORS
MOMENT ABOUT AN AXIS In-Class Activities: Check Homework Reading Quiz Applications Scalar Analysis Vector Analysis Concept Quiz Group Problem Solving Attention.
MOMENT OF A COUPLE Today’s Objectives: Students will be able to
MOMENT ABOUT AN AXIS Today’s Objectives: Students will be able to determine the moment of a force about an axis using a) scalar analysis, and b) vector.
QUIZ #2 If cable CB is subjected to a tension that is twice that of cable CA, determine the angle Θ for equilibrium of the 10-kg cylinder. Also, what are.
POSITION VECTORS & FORCE VECTORS
DOT PRODUCT In-Class Activities: Check Homework Reading Quiz Applications / Relevance Dot product - Definition Angle Determination Determining the Projection.
Students will be able to: a) understand and define moment, and,
4.4 Principles of Moments Also known as Varignon’s Theorem
MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS Today’s Objectives : Students will be.
MOMENT OF A FORCE (SCALAR FORMULATION), CROSS PRODUCT, MOMENT OF A FORCE (VECTOR FORMULATION), & PRINCIPLE OF MOMENTS In-Class Activities : Check Homework.
MOMENT ABOUT AN AXIS Today’s Objectives:
CE Statics Lecture 12. MOMENT OF A FORCE ABOUT A SPECIFIED AXIS Scalar Analysis Mo = (20 N) (0.5 m) = 10 N.m (F tends to turn about the Ob axis)
MOMENT OF A COUPLE In-Class activities: Check Homework Reading Quiz Applications Moment of a Couple Concept Quiz Group Problem Solving Attention Quiz Today’s.
Statics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. In-Class activities: Check Homework Reading Quiz.
MOMENT OF A FORCE (Section 4.1) Today’s Objectives : Students will be able to: a) understand and define moment, and, b) determine moments of a force in.
MOMENT ABOUT AN AXIS Today’s Objectives: Students will be able to determine the moment of a force about an axis using a) scalar analysis, and b) vector.
Chapter 4 Force System Resultant. The moment of a force about a point provides a measure of the tendency for rotation (sometimes called a torque). 4.1.
Statics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. In-Class Activities: Check Homework Reading Quiz.
Force System Resultants 4 Engineering Mechanics: Statics in SI Units, 12e Copyright © 2010 Pearson Education South Asia Pte Ltd.
Copyright © 2010 Pearson Education South Asia Pte Ltd
RIGID BODY EQUILIBRIUM IN 3-D
Students will be able to: Determine the effect of moving a force.
Forces and Moments Mo = F x d What is a moment?
MOMENT OF A FORCE (SCALAR FORMULATION), CROSS PRODUCT, MOMENT OF A FORCE (VECTOR FORMULATION), & PRINCIPLE OF MOMENTS Objectives : a) understand and define.
RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)
DOT PRODUCT Today’s Objective:
Sample Problem 3.1 e) Although each of the forces in parts b), c), and d) produces the same moment as the 100 lb force, none are of the same magnitude.
EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM Today’s Objectives: Students will be able.
MOMENT ABOUT AN AXIS (Section 4.5)
RELATIVE MOTION ANALYSIS: VELOCITY
MOMENT ABOUT AN AXIS Today’s Objectives:
MOMENT ABOUT AN AXIS Today’s Objectives:
4.5 MOMENT ABOUT AN AXIS - Scalar analysis
MOMENT ABOUT AN AXIS Today’s Objectives:
Moments of the forces Mo = F x d A moment is a turning force.
DOT PRODUCT Today’s Objective:
Engineering Mechanics : STATICS
ROTATION ABOUT A FIXED AXIS
MOMENT OF A COUPLE Today’s Objectives: Students will be able to
Copyright © 2010 Pearson Education South Asia Pte Ltd
MOMENT ABOUT AN AXIS Today’s Objectives:
MOMENT ABOUT AN AXIS Today’s Objectives:
DOT PRODUCT Today’s Objective:
MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS Today’s Objectives : Students will be.
MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS Today’s Objectives : Students will be.
Statics Course Code: CIVL211 Dr. Aeid A. Abdulrazeg
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg
MOMENT OF A COUPLE Today’s Objectives: Students will be able to
RELATIVE MOTION ANALYSIS: VELOCITY
Students will be able to use the dot product to:
Students will be able to a) define a couple, and,
MOMENT OF A COUPLE Today’s Objectives: Students will be able to
EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM Today’s Objectives: Students will be able.
MOMENT OF A FORCE (SCALAR FORMULATION), CROSS PRODUCT, MOMENT OF A FORCE (VECTOR FORMULATION), & PRINCIPLE OF MOMENTS Today’s Objectives : Students will.
Students will be able to: a) understand and define moment, and,
MOMENT OF A COUPLE Today’s Objectives: Students will be able to
MOMENT OF A FORCE (Section 4.1)
Presentation transcript:

MOMENT ABOUT AN AXIS (Section 4.5) Today’s Objectives: Students will be able to determine the moment of a force about an axis using a) scalar analysis, and b) vector analysis. In-Class Activities: Check Home work, if any Reading quiz Applications Scalar analysis Vector analysis Concept quiz Group problem solving Attention quiz

READING QUIZ 1. When determining the moment of a force about a specified axis, the axis must be along _____________. A) the x axis B) the y axis C) the z axis D) any line in 3-D space E) any line in the x-y plane 2. The triple scalar product u • ( r  F ) results in A) a scalar quantity ( + or - ). B) a vector quantity. C) zero. D) a unit vector. E) an imaginary number.

APPLICATIONS With the force F, a person is creating the moment MA. What portion of MA is used in turning the socket? The force F is creating the moment MO. How much of MO acts to unscrew the pipe?

SCALAR ANALYSIS Recall that the moment of a force about any point A is MA= F dA where dA is the perpendicular (or shortest) distance from the point to the force’s line of action. This concept can be extended to find the moment of a force about an axis. In the figure above, the moment about the y-axis would be My= 20 (0.3) = 6 N·m. However this calculation is not always trivial and vector analysis may be preferable.

VECTOR ANALYSIS Our goal is to find the moment of F (the tendency to rotate the body) about the axis a’-a. First compute the moment of F about any arbitrary point O that lies on the a’a axis using the cross product. MO = r  F Now, find the component of MO along the axis a’-a using the dot product. Ma = ua • MO

VECTOR ANALYSIS (continued) Ma can also be obtained as The above equation is also called the triple scalar product. In the this equation, ua represents the unit vector along the axis a’-a axis, r is the position vector from any point on the a’-a axis to any point A on the line of action of the force, and F is the force vector.

Given: A force is applied to the tool to open a gas valve. EXAMPLE Given: A force is applied to the tool to open a gas valve. Find: The magnitude of the moment of this force about the z axis of the value. Plan: A B 1) We need to use Mz = u • (r  F). 2) Note that u = 1 k. 3) The vector r is the position vector from A to B. 4) Force F is already given in Cartesian vector form.

EXAMPLE (continued) u = 1 k rAB = {0.25 sin 30° i + 0.25 cos30° j} m = {0.125 i + 0.2165 j} m F = {-60 i + 20 j + 15 k} N Mz = u • (rAB  F) B Mz = = 1{0.125(20) – 0.2165(-60)} N·m = 15.5 N·m

CONCEPT QUIZ 1. The vector operation (P  Q) • R equals A) P • (Q  R). B) R • (P  Q). C) (P • R)  (Q • R). D) (P  R) • (Q  R ). Answers: 1.B

CONCEPT QUIZ 2. The force F is acting along DC. Using the triple product to determine the moment of F about the bar BA, you could use any of the following position vectors except ______. A) rBC B) rAD C) rAC D) rDB E) rBD ANSWERS: 2. D

GROUP PROBLEM SOLVING Given: A force of 80 lb acts along the edge DB. Find: The magnitude of the moment of this force about the axis AC. Plan: 1) We need to use M AC = uAC • (rAB  FDB) 2) Find uAC = rAC / r AC 3) Find FDB = 80 lb uDB = 80 lb (rDB / rDB) 4) Complete the triple scalar product.

SOLUTION rAB = { 20 j } ft rAC = { 13 i + 16 j } ft rDB = { -5 i + 10 j – 15 k } ft uAC = ( 13 i + 16 j ) ft / (13 2 + 16 2 ) ½ ft = 0.6306 i + 0.7761 j FDB = 80 {rDB / (5 2 + 10 2 + 15 2) ½ } lb = {-21.38 i + 42.76 j – 64.14 k } lb

Solution (continued) Now find the triple product, MAC = uAC • ( rAB  FDB ) MAC = ft lb MAC = 0.6306 {20 (-64.14) – 0 – 0.7706 (0 – 0)} lb·ft = -809 lb·ft The negative sign indicates that the sense of MAC is opposite to that of uAC

ATTENTION QUIZ 1. For finding the moment of the force F about the x-axis, the position vector in the triple scalar product should be ___ . A) rAC B) rBA C) rAB D) rBC 2. If r = {1 i + 2 j} m and F = {10 i + 20 j + 30 k} N, then the moment of F about the y-axis is ____ N·m. A) 10 B) -30 C) -40 D) None of the above. ANSWERS: 1. C 2. B

End of the Lecture Let Learning Continue