Step by step for Tomasulo Scheme

Slides:



Advertisements
Similar presentations
CMSC 611: Advanced Computer Architecture Tomasulo Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted.
Advertisements

Scoreboarding & Tomasulos Approach Bazat pe slide-urile lui Vincent H. Berk.
Instruction-level Parallelism Compiler Perspectives on Code Movement dependencies are a property of code, whether or not it is a HW hazard depends on.
Lec18.1 Step by step for Dynamic Scheduling by reorder buffer Copyright by John Kubiatowicz (http.cs.berkeley.edu/~kubitron)
A scheme to overcome data hazards
Dynamic ILP: Scoreboard Professor Alvin R. Lebeck Computer Science 220 / ECE 252 Fall 2008.
Dyn. Sched. CSE 471 Autumn 0219 Tomasulo’s algorithm “Weaknesses” in scoreboard: –Centralized control –No forwarding (more RAW than needed) Tomasulo’s.
Lecture 6: ILP HW Case Study— CDC 6600 Scoreboard & Tomasulo’s Algorithm Professor Alvin R. Lebeck Computer Science 220 Fall 2001.
COMP25212 Advanced Pipelining Out of Order Processors.
Computer Architecture
1 Zvika Guz Slides modified from Prof. Dave Patterson, Prof. John Kubiatowicz, and Prof. Nancy Warter-Perez Out Of Order Execution.
1 IBM System 360. Common architecture for a set of machines. Robert Tomasulo worked on a high-end machine, the Model 91 (1967), on which they implemented.
ENGS 116 Lecture 71 Scoreboarding Vincent H. Berk October 8, 2008 Reading for today: A.5 – A.6, article: Smith&Pleszkun FRIDAY: NO CLASS Reading for Monday:
Nov. 9, Lecture 6: Dynamic Scheduling with Scoreboarding and Tomasulo Algorithm (Section 2.4)
1 Sixth Lecture: Chapter 3: CISC Processors (Tomasulo Scheduling and IBM System 360/91) Please recall:  Multicycle instructions lead to the requirement.
Out-of-order execution: Scoreboarding and Tomasulo Week 2
1 Lecture 6 Tomasulo Algorithm CprE 581 Computer Systems Architecture, Fall 2009 Zhao Zhang Reading:Textbook 2.4, 2.5.
Professor Nigel Topham Director, Institute for Computing Systems Architecture School of Informatics Edinburgh University Informatics 3 Computer Architecture.
2/24; 3/1,3/11 (quiz was 2/22, QuizAns 3/8) CSE502-S11, Lec ILP 1 Tomasulo Organization FP adders Add1 Add2 Add3 FP multipliers Mult1 Mult2 From.
Chapter 3 Instruction Level Parallelism Dr. Eng. Amr T. Abdel-Hamid Elect 707 Spring 2011 Computer Applications Text book slides: Computer Architec ture:
04/03/2016 slide 1 Dynamic instruction scheduling Key idea: allow subsequent independent instructions to proceed DIVDF0,F2,F4; takes long time ADDDF10,F0,F8;
COMP25212 Advanced Pipelining Out of Order Processors.
CS203 – Advanced Computer Architecture ILP and Speculation.
Ch2. Instruction-Level Parallelism & Its Exploitation 2. Dynamic Scheduling ECE562/468 Advanced Computer Architecture Prof. Honggang Wang ECE Department.
Sections 3.2 and 3.3 Dynamic Scheduling – Tomasulo’s Algorithm 吳俊興 高雄大學資訊工程學系 October 2004 EEF011 Computer Architecture 計算機結構.
IBM System 360. Common architecture for a set of machines
/ Computer Architecture and Design
Out of Order Processors
Tomasulo Loop Example Loop: LD F0 0 R1 MULTD F4 F0 F2 SD F4 0 R1
CS203 – Advanced Computer Architecture
Microprocessor Microarchitecture Dynamic Pipeline
CSE 520 Computer Architecture Lec Chapter 2 - DS-Tomasulo
Lecture 6 Score Board And Tomasulo’s Algorithm
March 11, 2002 Prof. David E. Culler Computer Science 252 Spring 2002
Chapter 3: ILP and Its Exploitation
Advantages of Dynamic Scheduling
High-level view Out-of-order pipeline
11/14/2018 CPE 631 Lecture 10: Instruction Level Parallelism and Its Dynamic Exploitation Aleksandar Milenković, Electrical and Computer.
CMSC 611: Advanced Computer Architecture
A Dynamic Algorithm: Tomasulo’s
COMP s1 Seminar 3: Dynamic Scheduling
Out of Order Processors
Last Week Talks Any feedback from the talks? What did you like?
CS252 Graduate Computer Architecture Lecture 6 Scoreboard, Tomasulo, Register Renaming February 7th, 2011 John Kubiatowicz Electrical Engineering and.
John Kubiatowicz (http.cs.berkeley.edu/~kubitron)
CS 704 Advanced Computer Architecture
Adapted from the slides of Prof
Checking for issue/dispatch
Lecture 7: Dynamic Scheduling with Tomasulo Algorithm (Section 2.4)
March 11, 2002 Prof. David E. Culler Computer Science 252 Spring 2002
CSCE430/830 Computer Architecture
Advanced Computer Architecture
Static vs. dynamic scheduling
September 20, 2000 Prof. John Kubiatowicz
1/2/2019 CPE 631 Lecture 10: Instruction Level Parallelism and Its Dynamic Exploitation Aleksandar Milenković, Electrical and Computer.
Tomasulo Organization
Reduction of Data Hazards Stalls with Dynamic Scheduling
Adapted from the slides of Prof
Lecture 5 Scoreboarding: Enforce Register Data Dependence
CS152 Computer Architecture and Engineering Lecture 16 Compiler Optimizations (Cont) Dynamic Scheduling with Scoreboards.
CS252 Graduate Computer Architecture Lecture 6 Tomasulo, Implicit Register Renaming, Loop-Level Parallelism Extraction Explicit Register Renaming February.
Scoreboarding ENGS 116 Lecture 7 Vincent H. Berk October 5, 2005
/ Computer Architecture and Design
John Kubiatowicz (http.cs.berkeley.edu/~kubitron)
September 20, 2000 Prof. John Kubiatowicz
CS252 Graduate Computer Architecture Lecture 6 Introduction to Advanced Pipelining: Out-Of-Order Execution John Kubiatowicz Electrical Engineering and.
CSL718 : Superscalar Processors
High-level view Out-of-order pipeline
Lecture 7 Dynamic Scheduling
Conceptual execution on a processor which exploits ILP
Presentation transcript:

Step by step for Tomasulo Scheme Copyright by John Kubiatowicz (http.cs.berkeley.edu/~kubitron) 3/20/01 ©UCB Spring 2001

Tomasulo Organization FP Registers From Mem FP Op Queue Load Buffers Load1 Load2 Load3 Load4 Load5 Load6 Store Buffers Resolve RAW memory conflict? (address in memory buffers) Integer unit executes in parallel Add1 Add2 Add3 Mult1 Mult2 Reservation Stations To Mem FP adders FP multipliers Common Data Bus (CDB) 3/20/01 ©UCB Spring 2001

Reservation Station Components Op: Operation to perform in the unit (e.g., + or –) Vj, Vk: Value of Source operands Store buffers has V field, result to be stored Qj, Qk: Reservation stations producing source registers (value to be written) Note: No ready flags as in Scoreboard; Qj,Qk=0 => ready Store buffers only have Qi for RS producing result Busy: Indicates reservation station or FU is busy Register result status—Indicates which functional unit will write each register, if one exists. Blank when no pending instructions that will write that register. What you might have thought 1. 4 stages of instruction executino 2.Status of FU: Normal things to keep track of (RAW & structura for busyl): Fi from instruction format of the mahine (Fi is dest) Add unit can Add or Sub Rj, Rk - status of registers (Yes means ready) Qj,Qk - If a no in Rj, Rk, means waiting for a FU to write result; Qj, Qk means wihch FU waiting for it 3.Status of register result (WAW &WAR)s: which FU is going to write into registers Scoreboard on 6600 = size of FU 6.7, 6.8, 6.9, 6.12, 6.13, 6.16, 6.17 FU latencies: Add 2, Mult 10, Div 40 clocks 3/20/01 ©UCB Spring 2001

Three Stages of Tomasulo Algorithm 1. Issue—get instruction from FP Op Queue If reservation station free (no structural hazard), control issues instr & sends operands (renames registers). 2. Execution—operate on operands (EX) When both operands ready then execute; if not ready, watch Common Data Bus for result 3. Write result—finish execution (WB) Write on Common Data Bus to all awaiting units; mark reservation station available Normal data bus: data + destination (“go to” bus) Common data bus: data + source (“come from” bus) 64 bits of data + 4 bits of Functional Unit source address Write if matches expected Functional Unit (produces result) Does the broadcast 3/20/01 ©UCB Spring 2001

Tomasulo Example 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 1 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 2 Note: Unlike 6600, can have multiple loads outstanding 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 3 Note: registers names are removed (“renamed”) in Reservation Stations; MULT issued vs. scoreboard Load1 completing; what is waiting for Load1? 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 4 Load2 completing; what is waiting for Load1? 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 5 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 6 Issue ADDD here vs. scoreboard? 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 7 Add1 completing; what is waiting for it? 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 8 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 9 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 10 Add2 completing; what is waiting for it? 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 11 Write result of ADDD here vs. scoreboard? All quick instructions complete in this cycle! 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 12 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 13 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 14 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 15 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 16 3/20/01 ©UCB Spring 2001

Faster than light computation (skip a couple of cycles) 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 55 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 56 Mult2 is completing; what is waiting for it? 3/20/01 ©UCB Spring 2001

Tomasulo Example Cycle 57 Once again: In-order issue, out-of-order execution and completion. 3/20/01 ©UCB Spring 2001

Compare to Scoreboard Cycle 62 Why take longer on scoreboard/6600? Structural Hazards Lack of forwarding 3/20/01 ©UCB Spring 2001