Efficient Device-Independent Quantum Key Distribution

Slides:



Advertisements
Similar presentations
Robust device independent randomness amplification with few devices F.G.S.L Brandao 1, R. Ramanathan 2 A. Grudka 3, K. 4, M. 5,P. 6 Horodeccy 1 Department.
Advertisements

QCRYPT 2011, Zurich, September 2011 Lluis Masanes 1, Stefano Pironio 2 and Antonio Acín 1,3 1 ICFO-Institut de Ciencies Fotoniques, Barcelona 2 Université.
Randomness Extraction and Privacy Amplification with quantum eavesdroppers Thomas Vidick UC Berkeley Based on joint work with Christopher Portmann, Anindya.
Amortizing Garbled Circuits Yan Huang, Jonathan Katz, Alex Malozemoff (UMD) Vlad Kolesnikov (Bell Labs) Ranjit Kumaresan (Technion) Cut-and-Choose Yao-Based.
Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
Serge Fehr & Christian Schaffner CWI Amsterdam, The Netherlands 1 Randomness Extraction via ± -Biased Masking in the Presence of a Quantum Attacker TCC.
Emergence of Quantum Mechanics from Classical Statistics.
Entanglement and Bell’s Inequalities Aaron Michalko Kyle Coapman Alberto Sepulveda James MacNeil Madhu Ashok Brian Sheffler.
Quantum Cryptography Ranveer Raaj Joyseeree & Andreas Fognini Alice Bob Eve.
Quantum Key Distribution Yet another method of generating a key.
Toyohiro Tsurumaru (Mitsubishi Electric Corporation) Masahito Hayashi (Graduate School of Information Sciences, Tohoku University / CQT National University.
BB84 Quantum Key Distribution 1.Alice chooses (4+  )n random bitstrings a and b, 2.Alice encodes each bit a i as {|0>,|1>} if b i =0 and as {|+>,|->}
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
Quantum Cryptography December, 3 rd 2007 Philippe LABOUCHERE Annika BEHRENS.
EECS 598 Fall ’01 Quantum Cryptography Presentation By George Mathew.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography.
Spanish Cryptography Days, November 2011, Murcia, Spain Antonio Acín ICREA Professor at ICFO-Institut de Ciencies Fotoniques, Barcelona Device-Independent.
Feynman Festival, Olomouc, June 2009 Antonio Acín N. Brunner, N. Gisin, Ll. Masanes, S. Massar, M. Navascués, S. Pironio, V. Scarani Quantum correlations.
A Few Simple Applications to Cryptography Louis Salvail BRICS, Aarhus University.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
April 12, 2006 Berk Akinci 1 Quantum Cryptography Berk Akinci.
Physical Randomness Extractor Xiaodi Wu (MIT) device ……. Ext(x,s i ) Ext(x,0) Decouple ……. Z1Z1 ZiZi Z i+1 Eve Decouple ……. x uniform-to-all uniform-to-device.
QCCC07, Aschau, October 2007 Miguel Navascués Stefano Pironio Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Cryptographic properties of.
Device-independent security in quantum key distribution Lluis Masanes ICFO-The Institute of Photonic Sciences arXiv:
Integrity via Encryption with Redundancy  Question: Encryption is not ideal for authentication. But, can we gain security advantages if we add recognizable.
Quantum Key Distribution Chances and Restrictions Norbert Lütkenhaus Emmy Noether Research Group Institut für Theoretische Physik I Universität Erlangen-Nürnberg.
CS555Topic 251 Cryptography CS 555 Topic 25: Quantum Crpytography.
1 Content IP-SECOQC – Consortium, Funding What is Quantum Cryptography? Project Goals / Project Structure Standard Related Issues: –In Quantum Key Distribution.
Cryptography In the Bounded Quantum-Storage Model
Applications of Quantum Cryptography – QKD CS551/851CRyptographyApplicationsBistro Mike McNett 6 April 2004 Paper: Chip Elliott, David Pearson, and Gregory.
The question Can we generate provable random numbers? …. ?
Randomness Extraction Beyond the Classical World Kai-Min Chung Academia Sinica, Taiwan 1 Based on joint works with Xin Li, Yaoyun Shi, and Xiaodi Wu.
What are the minimal assumptions needed for infinite randomness expansion? Henry Yuen (MIT) Stellenbosch, South Africa 27 October 2015.
Feb 18 th, 2014 IQI Seminar, Caltech Kai-Min Chung IIS, Sinica,Taiwan Yaoyun Shi University of Michigan Xiaodi Wu MIT/UC Berkeley device ……. Ext(x,s i.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Quantum Cryptography Antonio Acín
Entanglement-based Free Space Quantum Cryptography in Daylight Antía Lamas-Linares, Matthew P. Peloso, Ilja Gerhardt, Caleb Ho and Christian Kurtsiefer.
Non-Locality Swapping and emergence of quantum correlations Nicolas Brunner Paul Skrzypczyk, Sandu Popescu University of Bristol.
Secret keys and random numbers from quantum non locality Serge Massar.
Cryptography and Non-Locality Valerio Scarani Centre for Quantum Technologies National University of Singapore Ph.D. and post-doc positions available Barrett.
1 Pascal URIEN, IETF 61th, Washington DC, 10th November 2004 draft-urien-eap-smartcard-06.txt “EAP-Support in Smartcard”
Non-Locality and Communication Complexity Stefan Wolf Università della Svizzera italiana Darmstadt,
Institute of Physics (IOP), Bhubaneswar
The device-independent outlook on quantum physics Definitions Part 1: History Part 2: self-testing Valerio Scarani.
Quantum nonlocality based on finite-speed causal influences
Enabling Interoperability for the Utility Enterprise
Háló Deloitte CRS Jailbreak & Behind.
Cybersecurity: Aspects of Cryptography from a Classical and Quantum Perspective (An Ongoing Review) Joseph Spring University of Hertfordshire British Council.
TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES NAMED AFTER MUHAMMAD AL-KHWARIZMI THE SMART HOME IS A BASIC OF SMART CITIES: SECURITY AND METHODS OF.
Source : Future Generation Computer Systems, Vol. 68, pp , 2017
Sampling of min-entropy relative to quantum knowledge Robert König in collaboration with Renato Renner TexPoint fonts used in EMF. Read the TexPoint.
Weak Value Assisted Quantum Key Distribution
with Weak Measurements
Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Kiyoshi Tamaki * *Perimeter Institute for.
Quantum Cryptography Arjun Vinod S3 EC Roll No:17.
Quantum Key Distribution
CAE: A Collusion Attack against Privacy-preserving Data Aggregation Schemes Wei Yang University of Science and Technology of China (USTC) Contact Me.
Study of nonlocal correlations in macroscopic measurement scenario
CV Cryptography Using a Bidirectional Quantum Channel
When are Fuzzy Extractors Possible?
A survey of network anomaly detection techniques
Path key establishment using multiple secured paths in wireless sensor networks CoNEXT’05 Guanfeng Li  University of Pittsburgh, Pittsburgh, PA Hui Ling.
When are Fuzzy Extractors Possible?
Additional notes on random variables
Chapter 4, Regression Diagnostics Detection of Model Violation
Additional notes on random variables
Based on results by: Masanes, Renner, Christandl, Winter and Barrett
CH2 Time series.
Fourth ITU Workshop on Network 2030
Bell Work Solve and Check x = y – 5.6 = 34.2 x = -68
Presentation transcript:

Efficient Device-Independent Quantum Key Distribution Esther Hänggi Renato Renner Stefan Wolf ETH Zürich EUROCRYPT 2010 31st May 2010

Quantum Key Distribution 1 1 'Traditional' QKD relies on: - Laws of Quantum Mechanics - Exact Specification of Devices

Why Device-Independence? 45° 45° 1 1 need to trust devices + manufacturer Example: BB84 Entanglement-based [BBM92] ([E91]) Other measurements or systems insecure

Quantum Key Distribution 1 1 no signaling 'Traditional' QKD relies on: - Laws of Quantum Mechanics no need to trust manufacturer - Exact Specification of Devices - Security of Labs

Systems and Security

PXYZ|UVW PXYZ|UVW W Z U V Y X Systems and Security random system [Maurer 02] U V Y PXYZ|UVW PXYZ|UVW X Condition: no signaling „shielded labs“

PXYZ|UVW W Z U V Y X Pr[XY=UV]=1- XY=UV Systems and Security 4-insecure secure [Barrett,Hardy,Kent 05]: different system 0 0 0 1 1 0 1 1 U V X Y → or But: - inefficient Privacy amplification? - noise-intolerant [BBR98],[ILL99]

   Privacy Amplification 4 4 4 individual attacks general attacks [HRW08] individual attacks [AGM06][SGBMPA06] [AMP06]  4  4  4

    Privacy Amplification 4 (4)n 4 4 general attacks + no signaling within labs [Masanes 09] (non-constructive) [this paper]: XOR deterministic privacy amplification function  4  (4)n  4  4

The Protocol - measure

PXY|UV   The Protocol - measure - check correlation - information reconciliation (random linear code) PXY|UV - privacy amplification  secure key

Conclusion Secure key - against most general attacks - universally composable - works based on (observable) violation of Bell Inequality - ONLY requirement: no signaling - device-independent Open question: relaxing of no signaling condition?

Thank you Full version: http://arxiv.org/abs/0911.4171