C N TM1 (a) WARLVMCFVLVLITTSIWTLIMV SOSUI PSORT II

Slides:



Advertisements
Similar presentations
Corrections. SEQUENCE 4 >seq4 MSTNNYQTLSQNKADRMGPGGSRRPRNSQHATASTPSASSCKEQQKDVEH EFDIIAYKTTFWRTFFFYALSFGTCGIFRLFLHWFPKRLIQFRGKRCSVE NADLVLVVDNHNRYDICNVYYRNKSGTDHTVVANTDGNLAELDELRWFKY.
Advertisements

©CMBI 2005 Exploring Protein Sequences – Part 1 Part 1: Patterns and Motifs Profiles Hydropathy Plots Transmembrane helices Antigenic Prediction Signal.
© Wiley Publishing All Rights Reserved. Analyzing Protein Sequences.
PREDICTION OF PROTEIN FEATURES Beyond protein structure (TM, signal/target peptides, coiled coils, conservation…)
P247. Figure 9-1 p248 Figure 9-2 p251 p251 Figure 9-3 p253.
Figure Figure 18-1 part 1 Figure 18-1 part 2.
A Genetic Approach to Analyzing Membrane Protein Topology Colin Manoil and Jon Beckwith Science, Vol. 233, , September 26, 1986.
Computational prediction of 3D Structure of Bilitranslocase Membrane Transporter: Drug Development Perspectives Amrita Roy Choudhury National Institute.
Levels of Protein Structure
Day 2: Protein Sequence Analysis 1.Physico-chemical properties. 2.Cellular localization. 3.Signal peptides. 4.Transmembrane domains. 5.Post-translational.
TMpro: Transmembrane Helix Prediction using Amino Acid Properties and Latent Semantic Analysis Madhavi Ganapathiraju, N. Balakrishnan, Raj Reddy and Judith.
Localization prediction of transmembrane proteins Stefan Maetschke, Mikael Bodén and Marcus Gallagher The University of Queensland.
I Ia II Ib I IaIb IIIII IV V VI Figure S1. Comparison of amino acid sequence of O. sativa (Os) SUV3 (1-579) with SUV3 from A. thaliana (At) (1-571), H.
Protein Properties Function, structure Residue features Targeting Post-trans modifications BIO520 BioinformaticsJim Lund Reading: Chapter , 11.7,
基 督 再 來 (一). 經文: 1 你們心裡不要憂愁;你們信神,也當信我。 2 在我父的家裡有許多住處;若是沒有,我就早 已告訴你們了。我去原是為你們預備地去 。 3 我 若去為你們預備了地方,就必再來接你們到我那 裡去,我在 那裡,叫你們也在那裡, ] ( 約 14 : 1-3)
Prediction of protein features. Beyond protein structure
MAKRLVLFATVVIALVALTVAEGEASRQLQCERELQESSLEACRLVVDQQLAGRLPWSTGLQMRCCQQLRDISAKCRPVAVSQVARQYGQ MAKRLVLFATVVIGLVALTVAEGEASRQLQCERELQESSLEACRLVVDQQLAGRLPWSTGLQMRCCQQLRDISAKCRPVAVSQVARQYGQ.
Membrane topology prediction of the SLC45A2 protein using TMHMM (v. 2
Supplementary Figure 1 ORF2 ORF3 Nelorpivirus (Group I Negevirus)
Structure of the Gene for Congenital Nephrotic Syndrome of the Finnish Type (NPHS1) and Characterization of Mutations  Ulla Lenkkeri, Minna Männikkö,
Sequence analyses and evolutionary conservation of the CLDN10 gene and the identified CLDN10 variants. Sequence analyses and evolutionary conservation.
Supplemental Figure S1. Alignment of drimenol synthase amino acid sequences from P. hydropiper and V. officinalis. Amino acid sequences were aligned with.
Слайд-дәріс Қарағанды мемлекеттік техникалық университеті
Protein Structure Prediction
by Parisa Asvadi, Zohra Ahmadi, and Beng H. Chong
.. -"""--..J '. / /I/I =---=-- -, _ --, _ = :;:.
Prediction of protein structure
Sebastian Meyer, Raimund Dutzler  Structure 
This Month in Gastroenterology
Dissecting the Actinoporin Pore-Forming Mechanism
II //II // \ Others Q.
I1I1 a 1·1,.,.,,I.,,I · I 1··n I J,-·
The FKBP8‐ATG8 interaction is dependent on an intact LIR docking site (LDS)‏ The FKBP8‐ATG8 interaction is dependent on an intact LIR docking site (LDS)
Volume 20, Issue 12, Pages (June 2010)
Model of human CLC-Kb transporter topology and positions of amino acid exchanges due to mutations in the CLCNKB gene as identified in Bartter syndrome.
The MSP domain of MOSPD2 binds the FFAT motif
MOSPD2 is a putative tail‐anchored protein
Autosomal Dominant Familial Calcium Pyrophosphate Dihydrate Deposition Disease Is Caused by Mutation in the Transmembrane Protein ANKH  Charlene J. Williams,
Percentage of proteins identified in envelope membrane extracts according to the purification method and the number of transmembrane domains. Percentage.
Genotype/Phenotype Analysis of a Photoreceptor-Specific ATP-Binding Cassette Transporter Gene, ABCR, in Stargardt Disease  Richard Alan Lewis, Noah F.
Orientational Preferences of Neighboring Helices Can Drive ER Insertion of a Marginally Hydrophobic Transmembrane Helix  Karin Öjemalm, Katrin K. Halling,
N-terminal extension of a gene using peptides mapping upstream to an annotated start site. N-terminal extension of a gene using peptides mapping upstream.
Volume 22, Issue 10, Pages (October 2014)
Sadaf Naz, Chantal M. Giguere, David C. Kohrman, Kristina L
Genomic Sequence Analysis of the Mouse Desmoglein Cluster Reveals Evidence for Six Distinct Genes: Characterization of Mouse DSG4, DSG5, and DSG6  Neil.
Solution Structure of Sco1
Molecular Determinants of Anion Selectivity in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore  Paul Linsdell, Alexandra.
Mod. Reg. Data set Correct topology location Sens- itivity Speci- ficity TMMOD 1 (a) (b) (c) S (78.3%) 51 (61.4%) 64 (77.1%) 67 (80.7%) 52 (62.7%)
Volume 40, Issue 2, Pages (October 2003)
Subunit Stoichiometry of the CNG Channel of Rod Photoreceptors
Membrane Thickness Cue for Cold Sensing in a Bacterium
Volume 25, Issue 5, Pages (November 2006)
Identification of the GCS1 ortholog in Gonium pectorale.
Shifty Ciliates  Lawrence A. Klobutcher, Philip J. Farabaugh  Cell 
. '. '. I;.,, - - "!' - -·-·,Ii '.....,,......, -,
Annoted amino acid sequence of Aedes aegypti gliotactin (Gli).
General structure of RIFINs and STEVORs
The alignment of P-type ATPase-like domains of TgATPaseP-GC, PfGCα, and PfGCβ with the members of human P4-ATPases. The alignment of P-type ATPase-like.
Mutational analysis within the 3′ region of the PKD1 gene
(A) Segregation of mutations in TMEM231 in JBTS families.
BnmAbs 3D3 and 2D10 bind RSV G bnmAbs 3D3 and 2D10 bind RSV G (A) Schematic of the RSV G glycoprotein from RSV strain A2, including the.
Jean-Louis Boulay, John J. O'Shea, William E. Paul  Immunity 
Comparison of the sequences of Fzo/Mfn and structure of mammalian Mfn2
Comparison of the predicted amino acid sequences of murine Rin (GenBank accession number U71202), human Rin (U71204), murine Rit (U71205), human Rit (U71203),
Cecilia P. Sanchez, Paul Horrocks, Michael Lanzer  Cell 
M L L L V L L V V L I L L I V R R Predicted transmembrane domain
Mutations in the Human Orthologue of the Mouse underwhite Gene (uw) Underlie a New Form of Oculocutaneous Albinism, OCA4  J.M. Newton, Orit Cohen-Barak,
Domain structure of TLR2 (A) and Nod2 (B).
Volume 97, Issue 6, Pages (June 1999)
Volume 12, Issue 5, Pages (May 2005)
Presentation transcript:

C N TM1 (a) WARLVMCFVLVLITTSIWTLIMV SOSUI 66 88 PSORT II VLITTSIWTLIMVILIP 75 91 TMHMM LVMCFVLVLITTSIWTLIMVILIP 69 HMMTOP TM1 programs (b) N C M1 M2 M3 M4 ER lumen Cytosol 137 Figure S2. Predicted transmembrane segments CpuLPATB. (a) Predicted transmembrane region of CpuLPATB by different programs; SOSUI (http://bp.nuap.nagoya-u.ac.jp/sosui/), PSORTII (http://psort.hgc.jp/form2.html), HMMTOP (www.enzim.hu/hmmtop/), and TMHMM server 2.0 (http://www.cbs.dtu.dk/services/TMHMM/). The numbers are indicated the amino acid residue of CpuLPATB. (b) Topological transmembrane (box with diagonal lines) and acyltransferse motifs (gray boxes) of CpuLPATB. The numbers are indicated the amino acid residue of CpuLPATB.