CH 10: Rotation.

Slides:



Advertisements
Similar presentations
Rolling Motion of a Rigid Object
Advertisements

Rotational Inertia. Circular Motion  Objects in circular motion have kinetic energy. K = ½ m v 2  The velocity can be converted to angular quantities.
今日課程內容 CH10 轉動 轉動牛頓第二運動定律 轉動動能 轉動慣量 Angular Quantities Here is the correspondence between linear and rotational quantities:
Angular Momentum The vector angular momentum of the point mass m about the point P is given by: The position vector of the mass m relative to the point.
Chapter 9 Rotational Dynamics.
L24-s1,8 Physics 114 – Lecture 24 §8.5 Rotational Dynamics Now the physics of rotation Using Newton’s 2 nd Law, with a = r α gives F = m a = m r α τ =
Chapter 9 Rotational Dynamics. 9.5 Rotational Work and Energy.
Physics Montwood High School R. Casao
1. mring= mdisk, where m is the inertial mass.
Copyright © 2012 Pearson Education Inc. Rotational Kinematics, Inertia Physics 7C lecture 11 Tuesday November 5, 8:00 AM – 9:20 AM Engineering Hall 1200.
Rigid body rotations inertia. Constant angular acceleration.
Dynamics of Rotational Motion
Chapter 10: Rotation. Rotational Variables Radian Measure Angular Displacement Angular Velocity Angular Acceleration.
Rotational Kinematics
Lecture 34, Page 1 Physics 2211 Spring 2005 © 2005 Dr. Bill Holm Physics 2211: Lecture 34 l Rotational Kinematics çAnalogy with one-dimensional kinematics.
Frank L. H. WolfsDepartment of Physics and Astronomy, University of Rochester Physics 121. March 18, 2008.
Phy 201: General Physics I Chapter 9: Rotational Dynamics Lecture Notes.
Physics 106: Mechanics Lecture 02
Physics 111: Elementary Mechanics – Lecture 9 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
D. Roberts PHYS 121 University of Maryland Physic² 121: Phundament°ls of Phy²ics I November 20, 2006.
PHYS 218 sec Review Chap. 9 Rotation of Rigid Bodies.
Rotational Work and Kinetic Energy Dual Credit Physics Montwood High School R. Casao.
Rotational Kinetic Energy. Kinetic Energy The kinetic energy of the center of mass of an object moving through a linear distance is called translational.
Work Let us examine the work done by a torque applied to a system. This is a small amount of the total work done by a torque to move an object a small.
Rolling Motion of a Rigid Object AP Physics C Mrs. Coyle.
Physics 1210/1310 Mechanics& Thermodynamics Thermodynamics Lecture R1-7 Rotational Motion.
Chapter 10 Rotational Kinematics and Energy. Units of Chapter 10 Angular Position, Velocity, and Acceleration Rotational Kinematics Connections Between.
Chapter 10 - Rotation Definitions: –Angular Displacement –Angular Speed and Velocity –Angular Acceleration –Relation to linear quantities Rolling Motion.
T071 Q17. A uniform ball, of mass M = kg and radius R = 0
When the axis of rotation is fixed, all particles move in a circle. Because the object is rigid, they move through the same angular displacement in the.
Example Problem The parallel axis theorem provides a useful way to calculate I about an arbitrary axis. The theorem states that I = Icm + Mh2, where Icm.
Rotation of Rigid Bodies
Two-Dimensional Rotational Kinematics 8.01 W09D1 Young and Freedman: 1.10 (Vector Products) , 10.5.
Chapter 11: Rotational Dynamics  As we did for linear (or translational) motion, we studied kinematics (motion without regard to the cause) and then dynamics.
Physics 1501: Lecture 19, Pg 1 Physics 1501: Lecture 19 Today’s Agenda l Announcements çHW#7: due Oct. 21 l Midterm 1: average = 45 % … l Topics çRotational.
10/10/2012PHY 113 A Fall Lecture 171 PHY 113 A General Physics I 9-9:50 AM MWF Olin 101 Plan for Lecture 17: Chapter 10 – rotational motion 1.Angular.
Chapter 10 Rotational Motion.
Rotational Motion. Angular Quantities Angular Displacement Angular Speed Angular Acceleration.
Rigid Body Particle Object without extent Point in space Solid body with small dimensions.
Rotational kinematics and energetics
Rotational Kinetic Energy An object rotating about some axis with an angular speed, , has rotational kinetic energy even though it may not have.
CHAPTER 6 PLANAR KINETICS OF A RIGID BODY: FORCE AND ACCELERATION.
Sect. 10.4: Rotational Kinetic Energy
Rotation of a body about an axisRIGID n FIXED Every point of body moves in a circle Not fluids,. Every point is constrained and fixed relative to all.
Physics 207: Lecture 16, Pg 1 Lecture 16Goals: Chapter 12 Chapter 12  Extend the particle model to rigid-bodies  Understand the equilibrium of an extended.
1 Rotation of a Rigid Body Readings: Chapter How can we characterize the acceleration during rotation? - translational acceleration and - angular.
1 Work in Rotational Motion Find the work done by a force on the object as it rotates through an infinitesimal distance ds = r d  The radial component.
Ch. 9 Rotational Kinematics
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
Physics 101: Lecture 13, Pg 1 Physics 101: Lecture 13 Rotational Kinetic Energy and Inertia Exam II.
10-5 Rotational Dynamics; Torque and Rotational Inertia
Wednesday, Nov. 10, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Moment of Inertia 2.Parallel Axis Theorem 3.Torque and Angular Acceleration 4.Rotational.
Rotational Motion – Part I AP Physics C. The radian  There are 2 types of pure unmixed motion:  Translational - linear motion  Rotational - motion.
Short Version : 10. Rotational Motion Angular Velocity & Acceleration (Instantaneous) angular velocity Average angular velocity  = angular displacement.
Physics. Session Rotational Mechanics -7 Session Objectives.
Theoretical Mechanics DYNAMICS * Navigation: Right (Down) arrow – next slide Left (Up) arrow – previous slide Esc – Exit Notes and Recommendations:
Chapter 10 Lecture 18: Rotation of a Rigid Object about a Fixed Axis: II.
Chapter 11 Angular Momentum; General Rotation 10-9 Rotational Kinetic Energy 11-2 Vector Cross Product; Torque as a Vector 11-3Angular Momentum of a Particle.
Rigid Body: Rotational and Translational Motion; Rolling without Slipping 8.01 W11D1.
Causes of Rotation Sum the Torques.
-Calculation of Moments of Inertia for Rigid Objects of Different Geometries -Parallel Axis Theorem AP Physics C Mrs. Coyle.
Rotational Inertia.
Rotational Dynamics Chapter 9.
Lecture 17 Goals Relate and use angle, angular velocity & angular acceleration Identify vectors associated with angular motion Introduce Rotational Inertia.
Lecture 17 Goals: Chapter 12 Define center of mass
C9 – Rotational Energy Get a spring General Physics.
Remember Newton’s 2nd Law?
Rotational Dynamics The game plan….
Remember Newton’s 2nd Law?
Rotational Inertia AP Physics C.
Presentation transcript:

CH 10: Rotation

Rotational Kinetic Energy Kinetic energy describes the amount of energy an object has when it is moving. We have discussed translational motion, but we must also consider rotational motion. Let us look at the kinetic energy of a system of particles that is rotating about an arbitrary point. We begin by examining the kinetic energy of one particle of that system. Ki – Kinetic energy of ith particle vi – Tangential velocity of ith particle It is more convenient to look at the angular velocity for a system of rotating objects, especially if we assume they all have the same angular velocity. If we look at the entire system, we must sum the kinetic energies for each particle. KR – Rotational kinetic energy [J] I – Rotational Inertia [kg m2] We must consider the distribution of mass as opposed to just the mass. Where

Rotational Inertia (Moment of Inertia) The rotational inertia is the inertia of a rotating object. This determines how hard it is to change the motion of a rotating object. The mass of the object coupled with the distance from the point of rotation defines the rotational inertia. The more mass and the greater the distance from the point of rotation, the harder it is to change the rotation of the object. Discrete particles Continuous object I – Rotational Inertia r – the distance from the axis of rotation

3. Both reach the bottom at the same time. Two cylinders of the same size and mass roll down an incline. Cylinder A has most of its weight concentrated at the rim, while cylinder B has most of its weight concentrated at the center. Which reaches the bottom of the incline first? 1. A 2. B 3. Both reach the bottom at the same time. Answer: 2.When the cylinders roll down the incline, gravitational potential energy gets converted to translational and rotational kinetic energy: mgh = 1⁄2 mv2 + 1⁄2 Iω2. We can substitute v/r for ω and write mgh = 1⁄2 (m + I/r2)v2. The values for m and r are the same for both cylinders, and so the cylinder having the smaller rotational inertia has the larger speed. The smaller rotational inertia is obtained when more of the mass is concentrated near the center.

1. mring= mdisk, where m is the inertial mass. A solid disk and a ring roll down an incline. The ring is slower than the disk if 1. mring= mdisk, where m is the inertial mass. 2. rring = rdisk, where r is the radius. 3. mring = mdisk and rring = rdisk. 4. The ring is always slower regardless of the relative values of m and r. Answer: 4. The ring has more rotational inertia per unit mass than the disk. Therefore as it starts rolling, it has a relatively larger fraction of its total kinetic energy in rotational form and so its translational kinetic energy is lower than that of the disk. As the disk and ring roll down the incline, the potential energy of each is reduced by an amount mgh, where h is the difference in height between the bottom and top of the incline.This energy is converted to kinetic energy (translational and rotational): mgh = 1⁄2 mv2 + 1⁄2 Iω2.We can write the rotational inertia as I= cmR2,where c is a constant equal to 1 for the ring and 1⁄2 for the disk.Because ω= v/R,we have:mgh= 1⁄2mv2+ 1⁄2 cmR2(v/R)2= 1⁄2 (1 + c)mv2. The larger c, therefore, the smaller v.Thus the ring, which has the larger rotational inertia, takes longer to go down the incline, regardless of inertia and radius.

Example: Determine the rotational inertia of a cylinder about its central axis. z Total volume of cylinder Total mass of cylinder Rotational Inertia of a solid cylinder rotating about its longitudinal axis.

Parallel-Axis Theorem The rotational inertial of different objects through an axis of symmetry was shown for several objects. If the rotation axis is shifted away from an axis of symmetry the calculation becomes more difficult. A simple method, called the parallel axis theorem, was devised for situations where the rotation axis was shifted some distance from the symmetry axis. The symmetry axis is any axis that passes through the center of mass. I – rotational inertia ICM – Rotational inertia for a rotation axis that passes through the center of mass M – Total mass of the object D – Distance the axis has been shifted by The new rotation axis must be parallel to the symmetry axis that is being used to define ICM.