Starter Activity: Mr. Huynh

Slides:



Advertisements
Similar presentations
DO NOW (not later): Compare the number of boys to girls in the class.
Advertisements

DO NOW (not later): Compare the number of boys to girls in the class.
Equivalent Rational Expressions Example 1: When we multiply both the numerator and the denominator of a rational number by the same non-zero value, we.
Fractions are Easy A FRACTION is part of a whole.  It’s made of two parts. Numerator – tells you how many equal parts you have. Denominator – tells you.
Ratio. Ratio? Ratio is a way of comparing two or more quantities E.g. –Number of Red Smarties in a box compared to Blue –Number of girls in a class compared.
Simplifying Fractions 3-5. Lesson 1 – Equivalent Fractions I can use multiples to write equivalent fractions. I can use factors to write equivalent fractions.
ratio percent Write fractions as percents and percents as fractions.
* A ratio is a comparison of two quantities by division. Ratios like 1 out of 2 can be written as 1:2, ½, or 1 to 2. * When ratios compare a number to.
We use ratios to make comparisons between two things. When we express ratios in words, we use the word "to" – we say "the ratio of something to something.
 Multiply rational expressions.  Use the same properties to multiply and divide rational expressions as you would with numerical fractions.
Simplifying Fractions
Whiteboardmaths.com © 2004 All rights reserved
Ratios Using Data. Ratio is a comparison of two numbers, Usually written as a fraction a/b, where a and b are the numbers First number in the numerator.
Ratios and rates Warm Up
5-1 Students will be able to estimate ratios and rates from pictures and data. Write each fraction in simplest form
Ratios. Ratio? Ratio is a way of comparing two or more quantities Examples: ◦Number of oranges to apples ◦Number of girls in a class compared to boys.
Fractions, Decimals, and Percents SWBAT model percents; write percents as equivalent ratios and to write ratios as equivalent percents; write percents.
Simplify, Multiply & Divide Rational Expressions.
Pre-Algebra 7-1 Ratios and Proportions Warm Up Write each fraction in lowest terms. Pre-Algebra 7-1 Ratios and Proportions
Ratio and Proportion Most of the power point was taken from  Instructions  Read and work through.
Ratios & Proportional Relationships. Ratios Comparison of two numbers by division. Ratios can compare parts of a whole or compare one part to the whole.
What percent does the shaded area represent? COURSE 2 LESSON = = 60% 6-1 Understanding Percents.
Making Equivalent Fractions.
Do Now: Multiply the expression. Simplify the result.
Simplifying Fractions
Students will be able to simplify fractions and ratios (5-4).
Simplest Form of a Fraction
AIM: To be able to find the simplest form of a fraction
DO NOW (not later): Compare the number of boys to girls in the class.
Ratios.
Ratios.
Ratios and Proportions
Unit 2. Day 1..
Unit 2. Day 1..
Compiled by Mr. Lafferty Maths Dept.
7 . 2 – Equivalent fractions
Equivalent ratios.
Ratios Compare the number of boys to girls in the class.
Fractions IV Equivalent Fractions
Equivalent Fractions Lesson 3-4.
Warm-Up (Fractions) Calculator Free. [1] [2] [3] [4]
Today we will explain fractions in different ways
Equivalent Fractions.
Ratio.
Making Equivalent Fractions.
Making Equivalent Fractions.
Notes A ratio is a comparison of two quantities.
DO NOW (not later): Compare the number of boys to girls in the class.
Ratios involving complex fractions
Making Equivalent Fractions.
Making Equivalent Fractions.
Making Equivalent Fractions.
Which fraction is the same as ?
Making Equivalent Fractions.
Making Equivalent Fractions.
Fractions IV Equivalent Fractions
DO NOW (not later): Compare the number of boys to girls in the class.
I CAN write equivalent fractions
Simplifying Fractions
Making Equivalent Fractions.
Introducing Ratio.
What is a Ratio?.
A comparison of one quantity to another quantity
Goal: The learner will find equivalent fractions.
Fractions, Decimals, & Percents
Making Equivalent Fractions.
Equivalent Fractions.
L5-2 Notes: Simplifying Fractions
Presentation transcript:

Starter Activity: Mr. Huynh

Ratios: Lesson Objectives WALT: WhatAmLearningToday Identify simple ratios Write ratios in their simplest form Use ratios to find fractions of amounts Determine equivalent ratios WILF: WhatImLookingFor How to identify and write simple ratios How to use ratios to find fractions of amounts and their equivalences.

DO NOW (not later): Compare the number of boys to girls in the class.

The number of boys = The number of girls = If we compare boys to girls we get ___ boys to _____ girls.

What do we call a comparison between two or more quantities? We just found the RATIO of boys to girls. RATIO Is the ratio of girls to boys the same ? No, when writing a ratio, ORDER matters.

How many basketballs to footballs are there? For every 4 basketballs there are 6 footballs. The ratio is 4 to 6 or The ratio is 2 to 3.

Every ratio can be written in 3 ways: Order matters in a ratio. What are some other ways we can write the ratio of basketball to footballs? Every ratio can be written in 3 ways: 4 to 6 4 : 6 4 6 First quantity to Second quantity Careful!! Order matters in a ratio. 4 to 6 Is NOT the same as 6 to 4 First quantity : Second quantity First quantity divided by the second quantity (as a fraction).

Simplifying Ratios In the Football & Basketball example, we changed 4:6 to 2:3 This is called Simplifying a ratio We did it by dividing each number by 2 2 was the highest common factor

Try to simplify these 4:1 6:1 1:2 1:5 5:2 !! 8:2 18:3 4:8 5:25 5:2

Sharing an amount in a given ratio “Bart and Maggie share a bag of 16 sweets in the ratio 3:1” This means “for every 3 sweets Bart gets, Maggie gets 1” 4 12

16 ÷ 4 = 4 in a share 1 x 4 1 share 4 3 x 4 3 shares 12 “Bart and Maggie share a bag of 16 sweets in the ratio 3:1” … quicker way…. Another way to think of this 3:1 is shares Bart gets 3 shares to Maggie’s 1 So there are actually 4 shares 16 sweets shared by 4 16 ÷ 4 = 4 in a share 1 x 4 1 share 4 3 x 4 3 shares 12

Write the ratio of sandwiches to coke bottles 3 different ways. 6:8 , 6 to 8, and 6 8 Since a fraction can be simplified, We can simplify the ratio 6/8 to 3/4. The ratio of sandwiches to coke bottles can also be expressed as 3 : 4 or 3 to 4. In other words, ratios can be simplified to form equivalent ratios.

Equivalent Ratios Simplify the following ratios: 4 to 8 10 to 8 8 8 / 4 2 HCF = 4 Step 1 – Write the ratio as a fraction Step 2 – Simplify the fraction (Find the highest common factor (HCF) of both numbers and divide the numerator and denominator by the HCF). Step 3 – Write the equivalent ratio in the same form as the question

The ratio 2 : 3 can be expressed as Equivalent Ratios can be formed by multiplying the ratio by any number. For example, the ratio 2 : 3 can also be written as 4 : 6 (multiply original ratio by 2) 6 : 9 (multiply original ratio by 3) 8 : 12 (multiply original ratio by 4) The ratio 2 : 3 can be expressed as 2x to 3x (multiply the original ratio by any number x)