Guido Ala, Elisa Francomano, Antonino Spagnuolo

Slides:



Advertisements
Similar presentations
Christopher McCabe, Derek Causon and Clive Mingham Centre for Mathematical Modelling & Flow Analysis Manchester Metropolitan University MANCHESTER M1 5GD.
Advertisements

Chapter 1 Electromagnetic Fields
The electromagnetic (EM) field serves as a model for particle fields
EMLAB 1 Solution of Maxwell’s eqs for simple cases.
ELEN 3371 Electromagnetics Fall Lecture 6: Maxwell’s Equations Instructor: Dr. Gleb V. Tcheslavski Contact: Office.
PH0101 UNIT 2 LECTURE 31 PH0101 Unit 2 Lecture 3  Maxwell’s equations in free space  Plane electromagnetic wave equation  Characteristic impedance 
Electromagnetic Waves
MEASURES OF POST-PROCESSING THE HUMAN BODY RESPONSE TO TRANSIENT FIELDS Dragan Poljak Department of Electronics, University of Split R.Boskovica bb,
6. Wave Phenomena 6.1 General Wave Properties(1) Following Schunk’s notation, we use index 1 to indicate the electric and magnetic wave fields, E 1 and.
The electromagnetic (EM) field serves as a model for particle fields  = charge density, J = current density.
Particle-based fluid simulation for interactive applications
1 MECH 221 FLUID MECHANICS (Fall 06/07) Tutorial 6 FLUID KINETMATICS.
Module on Computational Astrophysics Jim Stone Department of Astrophysical Sciences 125 Peyton Hall : ph :
Modeling Fluid Phenomena -Vinay Bondhugula (25 th & 27 th April 2006)
5. Simplified Transport Equations We want to derive two fundamental transport properties, diffusion and viscosity. Unable to handle the 13-moment system.
Particle-Based non-Newtonian Fluid Animation for Melting Objects Afonso Paiva Fabiano P. do Carmo Thomas Lewiner Geovan Tavares Matmidia - Departament.
Wave propagation through arrays of unevenly spaced vertical piles Adviser : Jeng-Tzong Chen Date: February 06, 2009 Place: HR2 307 Reporter : Yi-Jhou Lin.
Slug flow and fluid-structure interaction in industrial pipe systems
Lecture 18 Chapter XI Propagation and Coupling of Modes in Optical Dielectric Waveguides – Periodic Waveguides Highlights (a) Periodic (corrugated) WG.
S.S. Yang and J.K. Lee FEMLAB and its applications POSTEC H Plasma Application Modeling Lab. Oct. 25, 2005.
Smoothed Particle Hydrodynamics
A Hybrid Particle-Mesh Method for Viscous, Incompressible, Multiphase Flows Jie LIU, Seiichi KOSHIZUKA Yoshiaki OKA The University of Tokyo,
Animation of Fluids.
Effects of Compressibility, Turbulent Viscosity and Mass-Transfer-Rate on Accretion Discs in Close Binaries: Timescales of Outburst Events G. Lanzafame.
Smoothed Particle Hydrodynamics (SPH) Fluid dynamics The fluid is represented by a particle system Some particle properties are determined by taking an.
EEE 431 Computational methods in Electrodynamics Lecture 1 By Rasime Uyguroglu.
A conservative FE-discretisation of the Navier-Stokes equation JASS 2005, St. Petersburg Thomas Satzger.
Modelling Tsunami Waves using Smoothed Particle Hydrodynamics (SPH) R.A. DALRYMPLE and B.D. ROGERS Department of Civil Engineering, Johns Hopkins University.
Periodic Boundary Conditions in Comsol
Hanjo Lim School of Electrical & Computer Engineering Lecture 2. Basic Theory of PhCs : EM waves in mixed dielectric.
The propagation of a microwave in an atmospheric pressure plasma layer: 1 and 2 dimensional numerical solutions Conference on Computation Physics-2006.
Action function of the electromagnetic field Section 27.
1996 Eurographics Workshop Mathieu Desbrun, Marie-Paule Gascuel
Simulating complex surface flow by Smoothed Particle Hydrodynamics & Moving Particle Semi-implicit methods Benlong Wang Kai Gong Hua Liu
Graduate Institute of Astrophysics, National Taiwan University Leung Center for Cosmology and Particle Astrophysics Chia-Yu Hu OSU Radio Simulation Workshop.
Progress on Component-Based Subsurface Simulation I: Smooth Particle Hydrodynamics Bruce Palmer Pacific Northwest National Laboratory Richland, WA.
1 EEE 431 Computational Methods in Electrodynamics Lecture 8 By Dr. Rasime Uyguroglu
A Non-iterative Hyperbolic, First-order Conservation Law Approach to Divergence-free Solutions to Maxwell’s Equations Richard J. Thompson 1 and Trevor.
1 IV European Conference of Computational Mechanics Hrvoje Gotovac, Veljko Srzić, Tonći Radelja, Vedrana Kozulić Hrvoje Gotovac, Veljko Srzić, Tonći Radelja,
Lecture 3. Full statistical description of the system of N particles is given by the many particle distribution function: in the phase space of 6N dimensions.
Smoothed Particle Hydrodynamics Matthew Zhu CSCI 5551 — Fall 2015.
1 EEE 431 Computational Methods in Electrodynamics Lecture 7 By Dr. Rasime Uyguroglu
Maxwell’s Equations in Free Space IntegralDifferential.
Hanyang University 1/29 Antennas & RF Devices Lab. Partially filled wave guide Jeong Gu Ho.
A Massively Parallel Incompressible Smoothed Particle Hydrodynamics Simulator for Oilfield Applications Paul Dickenson 1,2, William N Dawes 1 1 CFD Laboratory,
Smoothed Particle Hydrodynamics For Deformable Vessel Dynamics Progress Report Van Jones 2008/01/30.
Lecture 6: Maxwell’s Equations
Chapter 1 Electromagnetic Fields
Application of smooth particle hydrodynamics on biomass burning
ELEC 401 MICROWAVE ELECTRONICS Lecture 2
Introduction to the Finite Element Method
Maxwell’s Equations.
Chapter 3 Plasma as fluids
FLUID DYNAMICS Made By: Prajapati Dharmesh Jyantibhai ( )
Grid Open Days all’Università di Palermo Palermo,
Electromagnetics II.
THE METHOD OF LINES ANALYSIS OF ASYMMETRIC OPTICAL WAVEGUIDES Ary Syahriar.
PLANE WAVE PROPAGATION
Review Lecture Jeffrey Eldred Classical Mechanics and Electromagnetism
Eurocode 1: Actions on structures –
Quantum One.
ELEC 401 MICROWAVE ELECTRONICS Lecture 2
Maxwell’s equations.
Introduction: A review on static electric and magnetic fields
Continuous Systems and Fields
Comparison of CFEM and DG methods
Second Quantization and Quantum Field Theory
1st Week Seminar Sunryul Kim Antennas & RF Devices Lab.
Presentation transcript:

GRID Parallel Simulations of a Meshless Method for Electromagnetic Transients Guido Ala, Elisa Francomano, Antonino Spagnuolo Università degli Studi di Palermo Grid Open Days all’Università di Palermo Palermo, 6-7.12.2007

History SMOOTHED PARTICLE HYDRODYNAMICS (SPH) by Monaghan, Lucy, 1977 Used to solve Astrophysics and Fluid Dynamics problems Application to Electromagnetics (SPEM) Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Basic Ideas Domain discretization Arbitrary particle distribution Problem domain No connectivity law is needed (Meshfree) Particle representation Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Particle approximation of a function Basic Ideas Particle approximation of a function The value of the function in a particle is expressed by using the values of near particles, weighted by a suitable function W (Smoothing Kernel) Problem Domain Support domain Support Domains with the Smoothing Kernel Function Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

+ Formulation Integral representation of kernel approximation particle approximation Approximation of Number of particles in the support of the particle in x Smoothing length Problem Domain Smoothing kernel Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Dirac’s Function properties Smoothing Kernel Main properties Normalization Dirac’s Function properties Compactness Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Smoothing Kernel Gaussian Kernel B-Spline Kernel Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Smoothing Kernel By using the curl’s theorem If the support domain is fully into the problem domain The differential operator is directly applied to the kernel function Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Consistency If particles are irregularly distributed or there are domain zones with different distributions, the consistency condition for the kernel function may not be satisfied Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Variable distribution density of particles along the domain Consistency 1-D wave equations 0 < x < 1 t > 0 Variable distribution density of particles along the domain Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

With consistency restoration No consistency Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Consistency Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Consistency Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Maxwell’s curl Equations All EM phenomena can be described by mean of Maxwell’s curl equations and the constitutive relations of the media 1-D case Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Applications 2-D TM mode propagation in free space Simulation domain 80 x 80 cm2; 6400 particles PML Layers: 7 Source: Electric field Ez (gaussian pulse at timestep 1) Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Applications Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Field values calculation Applications CPU time (ms) Scalar 4 CPU parallel dW evaluation 19217 5730 Field values calculation 30 180 Data transferring - 40 Total time 19247 5950 Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

To do Optimal domain partitioning strategy 3-D model (in progress) Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Bibliography G.R. Liu, M.B. Liu “Smoothed Particle Hydrodynamics” World Scientific (2003) G.R. Liu, “Meshfree Methods”, CRC Press (2003) M. Lastiwka, N.Quinlan, M. Basa “Adaptive particle distribution for Smoothed Particle Hydrodynamics” Belytschko T., Krongauz Y., Dolbow J. and Gerlach C., “On the completeness of meshfree methods”, International Journal for Numerical Methods in Engineering, 43, pp. 785-819 (1998) Bonet J. and Lok T.-S. L., “Variational and momentum preservation aspects of Smooth Particle (1999) Hydrodynamics formulations”, Computer methods in applied mechanics and engineering, 180, pp. 97-115 Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007

Any Questions ? Thank you very much for your kind attention! Palermo, Grid Open Days all’Università di Palermo, 6-7.12.2007