Stat 35b: Introduction to Probability with Applications to Poker

Slides:



Advertisements
Similar presentations
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms 2.Flushes 3.Hellmuth vs. Farha 4.Worst possible beat 5.Jackpot.
Advertisements

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Zelda, continued. 2.Difficult homework 3 problem. 3.WSOP 2013 hand.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Savage/Tyler, Kaplan/Gazes 2.P(flop a full house) 3.Bernoulli random.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms. 2.Hellmuth/Gold. 3.Poisson. 4.Continuous distributions.
Mathematics and the Game of Poker
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review of random walks. 2.Ballot theorem. 3.P( avoiding zero )
1 Section 5.1 Discrete Probability. 2 LaPlace’s definition of probability Number of successful outcomes divided by the number of possible outcomes This.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw4. 2.Review list 3.Tournament 4.Sample problems * Final.
Counting. Techniques for counting Rule 1 Suppose we carry out have a sets A 1, A 2, A 3, … and that any pair are mutually exclusive (i.e. A 1  A 2 =
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Thur 3/8/12: 0.HAND IN HW3 again! 1.E(X+Y) example corrected. 2.Random.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 0. Collect hw2, return hw1, give out hw3. 1.Project A competition.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterm. 2.Review of Bernoulli and binomial random variables. 3.Geometric.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(cards til 2 nd king). 2.Negative binomial. 3.Rainbow flops examples,
Stat 35: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Collect Hw4. 2.Review list. 3.Answers to hw4. 4.Project B tournament.
Suppose someone bets (or raises) you, going all-in. What should your chances of winning be in order for you to correctly call? Let B = the amount bet to.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Collect Hw WSOP main event. 3.Review list.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.hw, terms, etc. 2.WSOP example 3. permutations, and combinations.
Outline for the day: 1.Discuss handout / get new handout. 2.Teams 3.Example projects 4.Expected value 5.Pot odds calculations 6.Hansen / Negreanu 7.P(4.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Deal-making and expected value 2.Odds ratios, revisited 3.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Poker Code competition: all-in or fold.   u 
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Review list 2.Bayes’ Rule example 3.CLT example 4.Other examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tues 2/28/12: 1.Midterms back. 2.Review of midterm. 3.Poisson distribution,
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value and pot odds, continued 2.Violette/Elezra example.
Expected value (µ) = ∑ y P(y) Sample mean (X) = ∑X i / n Sample standard deviation = √[∑(X i - X) 2 / (n-1)] iid: independent and identically distributed.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(X+Y) = E(X) + E(Y) examples. 2.CLT examples. 3.Lucky poker. 4.Farha.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw1! Get hw2. 2.Combos, permutations, and A  vs 2  after.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Tournaments 2.Review list 3.Random walk and other examples 4.Evaluations.
1)Hand in HW. 2)No class Tuesday (Veteran’s Day) 3)Midterm Thursday (1 page, double-sided, of notes allowed) 4)Review List 5)Review of Discrete variables.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.HW4 notes. 2.Law of Large Numbers (LLN). 3.Central Limit Theorem.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.PDFs and CDFs, for Random walks, ch 7.6. Reflection principle,
Outline: 1) Odds ratios, continued. 2) Expected value revisited, Harrington’s strategy 3) Pot odds 4) Examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Combos, permutations, and A  vs 2  after first ace 2.Conditional.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value. 2.Heads up with AA. 3.Heads up with Gus vs.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review List 2.Review of Discrete variables 3.Nguyen / Szenkuti.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratio example again. 2.Random variables. 3.cdf, pmf, and density,
Stat 35b: Introduction to Probability with Applications to Poker
Counting Principles Ex. Eight pieces of paper are numbered 1 to 8 and placed in a box. One piece of paper is drawn from the box, its number is written.
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Game Theory Just last week:
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Counting, Permutations, & Combinations
Lial/Hungerford/Holcomb/Mullins: Mathematics with Applications 11e Finite Mathematics with Applications 11e Copyright ©2015 Pearson Education, Inc. All.
Stat 35: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Standard undergrad probability course, not a poker strategy guide nor an endorsement of gambling. The usual undergrad topics + random walks, luck and skill,
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Presentation transcript:

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: Midterms back E(X+Y+Z) example, corrected. Rainbow flops. New WSOP champion. The fundamental theorem of poker Luck vs. skill Random walks. Reflection principle. Ballot theorem.   u    u 

2. E(X+Y+Z) example again. Deal til the 2nd king. X = # of cards til the 2nd king. E(X)? Consider any ordering of the deck. e.g. 7,Q,Ju,2, 9,K,3,9,7,A, K,… For any such ordering, there is another with the cards before the first king exchanged with the cards between the 1st king and the 2nd king. Similarly, for the cards between the 2nd king and 3rd king, and for the cards between the 3rd king and 4th king, and between the 4th king and the end of the deck. So, P(# of cards before 1st king = 5) = P(# of cards bet. 1st and 2nd king = 5), etc. Therefore if X1 = the # of cards before the 1st king, and X1 = # of cards between 1st and 2nd king, then E(X1) = ∑k k P(X1 =k) = ∑k k P(X2 =k) = E(X2). And, X1 + X2 + X3 + X4 + X5 = 48, so EX1 + EX2 + EX3 + EX4 + EX5 = 48, so E(X1) = E(X2) = E(X3) = E(X4) = E(X5) = 48/5 = 9.6 We want E(X1 + X2 + 2) = E(X1) + E(X2) + 2 = 21.2.

3. Rainbow flops. P(Rainbow flop) = choose(4,3) * 13 * 13 * 13 ÷ choose(52,3) choices for the 3 suits numbers on the 3 cards possible flops ~ 39.76%. Alternative way: conceptually, order the flop cards. No matter what flop card #1 is, P(suit of #2 ≠ suit of #1 & suit of #3 ≠ suits of #1 and #2) = P(suit #2 ≠ suit #1) * P(suit #3 ≠ suits #1 and #2 | suit #2 ≠ suit #1) = 39/51 * 26/50 ~ 39.76%. Q: Out of 100 hands, expected number of rainbow flops? +/- what? X = Binomial (n,p), with n = 100, p = 39.76%, q = 60.24%. E(X) = np = 100 * 0.3976 = 39.76 SD(X) = √(npq) = sqrt(23.95) = 4.89. So, expected around 39.76 +/- 4.89 rainbow flops, out of 100 hands.

4. New World Series of Poker Champion Joe Cada. 5. The Fundamental Theorem of Poker. David Sklansky, The Theory of Poker, 1987. “Every time you play a hand differently from the way you would have played it if you could see all your opponents’ cards, they gain; and every time you play your hand the same way you would have played it if you could see all their cards, they lose. Conversely, every time opponents play their hands differently from the way they would have if they could see all your cards, you gain; and every time they play their hands the same way they would have played if they could see all your cards, you lose.” Meaning? LLN: If X1, X2 , etc. are iid with expected value µ and sd s, then X ---> µ. Equity = pot * your probability of winning. Equity – your bets = your expected profit. Your expected profit can go up or down because of the cards dealt (luck) or because of what happens during the betting (skill?).

6. Luck versus skill. Example. Minieri vs. Lederer on Poker After Dark. Blinds 800/1600. Minieri Ac Jc, Lederer Ah 9h. Minieri 70.065%, Lederer 29.935%. Minieri raises to 4300, Lederer calls 2700. Flop 6c Ts Tc. Minieri 85.91%, Lederer 14.09%. Lederer checks, Minieri 6500, Lederer folds. a) Preflop dealing (luck). Minieri +642.08. Minieri is dealt a 70.065% probability of winning the pot, so his increase in expected profit is 70.065% * 3200 -1600 = 642.08. Lederer is dealt 29.935%, so his increase in expected profit is 29.935% * 3200 - 1600 = -642.08. b) Preflop betting (skill). Minieri +1083.51. The pot gets increased to 8600. 8600-3200=5400. Minieri has paid an additional 2700 but has 70.065% * 5400 = 3783.51 additional equity, so Minieri's expected profit due to betting is 3783.51 - 2700 = 1083.51. Correspondingly, Lederer's profit due to betting is -1083.51, since 29.935% * 5400 - 2700 = -1083.51.

Blinds 800/1600. Minieri Ac Jc, Lederer Ah 9h. Minieri 70 Blinds 800/1600. Minieri Ac Jc, Lederer Ah 9h. Minieri 70.065%, Lederer 29.935%. Minieri raises to 4300, Lederer calls 2700. Flop 6c Ts Tc. Minieri 85.91%, Lederer 14.09%. Lederer checks, Minieri 6500, Lederer folds. c) Flop dealing (luck). Minieri +1362.67. On the flop, Minieri's equity went from 70.065% of the 8600 pot to 85.91% of it. So by luck Minieri increased his equity by (85.91% - 70.065%)*8600 = +1362.67 d) Flop betting (skill). Minieri +1211.74. Because of the betting on the flop, Minieri's equity went from 85.91% of the 8600 pot to 100% of it, so Minieri increased his expected profit by (100% - 85.91%)*8600 = 1211.74. So, by luck, Minieri got 642.08 + 1362.67 = 2004.75. By skill, Minieri got 1083.51 + 1211.74 = 2295.25. The total = 2004.75 + 2295.25 = 4300, which is the number of chips Minieri won from Lederer in the hand. GRAND TOTAL for Minieri over 27 hands they showed, Luck -61023.59. Skill -13478.41. On the first 19 hands, Minieri gained 20,836.41 due to skill, On hands 20 and 21, Minieri tried two huge unsuccessful bluffs, and on those two hands combined, Minieri lost 40,117.40 in equity due to skill.

7. Random walks. Suppose that X1, X2, …, are iid and that Yk = X1 + … + Xk for k = 1, 2, …. Y0 = 0. Then the totals {Y1, Y2, …} is a random walk. The classical example is when each Xi is 1 or -1 with probability ½ each. For the classical random walk, what is P(Yk = j)? 0 if k is even and j is odd. Or vice versa. Or if j is not an integer, or if |j| > k. But otherwise, P(Yk = j) = P{go up (k+j)/2 times and down (k-j)/2 times} = Choose{k, (k+j)/2} (1/2)k.

8. Reflection principle. If j and k are > 0, then the number of paths from (0,j) to (n,k) that touch the x-axis = the number of paths from (0,-j) to (n,y). Reason: Any path from (0, -j) to (n,y) must go through the x-axis, and for any path from (0,-j) to (m,0) to (n,y), there is a corresponding path from (0,j) to (m,0) to (n,y), by reflecting each step of the path from (0,-j) to (m,0).

9. Ballot theorem. Suppose that in an election, candidate X gets x votes, and candidate Y gets y votes, where x > y. The probability that X always leads Y throughout the counting is (x-y) / (x+y). Proof. We know that, after counting n = x+y votes, the total difference in votes is x-y = a. We want to count the number of paths from (1,1) to (n,a) that do not touch the x-axis. By the reflection principle, the number of paths from (1,1) to (n,a) that do touch the x-axis equals the total number of paths from (1,-1) to (n,a). So the number of paths from (1,1) to (n,a) that do not touch the x-axis equals the number of paths from (1,1) to (n,a) minus the number of paths from (1,-1) to (n,a) = Choose(n-1,x-1) – Choose(n-1,x) = (n-1)! / [(x-1)! (n-x)!] – (n-1)! / [x! (n-x-1)!] = (n-1)! x / [x! (n-x)!] – (n-1)! (n-x) / [x! (n-x)!] = {n! / [x! (n-x)!]} (x/n) – {n! / [x! (n-x)!]} (n-x)/n = (x – y) / (x+y) {n! / [x! (n-x)!]} = (x – y) / (x+y) {Number of paths from (0,0) to (n,a)}. And each path is equally likely.

For a classical random walk, P(Y1 ≠ 0, Y2 ≠ 0, …, Y2n ≠ 0) = P(Y2n = 0). Proof. The number of paths from (0,0) to (2n, 2r) that don’t touch the x-axis at positive times = the number of paths from (1,1) to (2n,2r) that don’t touch the x-axis at positive times = N2n-1,2r-1 – N2n-1,2r+1. Let pn,x = P(Yn = x). P(Y1 > 0, Y2 > 0, …, Y2n-1 > 0, Y2n = 2r) = ½[p2n-1,2r-1 – p2n-1,2r+1]. Summing from r = 1 to ∞, P(Y1 > 0, Y2 > 0, …, Y2n-1 > 0, Y2n > 0) = (1/2) p2n-1,1 = (1/2) P(Y2n = 0). By symmetry, the same is true for P(Y1 < 0, Y2 < 0, …, Y2n-1 < 0, Y2n < 0). So, P(Y1 ≠ 0, Y2 ≠ 0, …, Y2n ≠ 0) = P(Y2n = 0).