AI as the Design of Agents

Slides:



Advertisements
Similar presentations
Additional Topics ARTIFICIAL INTELLIGENCE
Advertisements

Mehran University of Engineering and Technology, Jamshoro Artificial Intelligence (Second Term Final Year, 07 CS)
Intelligent Agents Chapter 2.
Intelligent Agents Russell and Norvig: 2
ICS-171: 1 Intelligent Agents Chapter 2 ICS 171, Fall 2009.
Intelligent Agents Chapter 2. Outline Agents and environments Agents and environments Rationality Rationality PEAS (Performance measure, Environment,
Chapter 2 Intelligent Agents
January 11, 2006AI: Chapter 2: Intelligent Agents1 Artificial Intelligence Chapter 2: Intelligent Agents Michael Scherger Department of Computer Science.
CSE 471/598, CBS 598 Intelligent Agents TIP We’re intelligent agents, aren’t we? Fall 2004.
ICS-271: 1 Intelligent Agents Chapter 2 ICS 279 Fall 09.
CMSC 471 Intelligent Agents Russell & Norvig Chapter 2.
Cooperating Intelligent Systems Intelligent Agents Chapter 2, AIMA.
AI as the Design of Agents
ICS-171: Notes 2: 1 Intelligent Agents Chapter 2 ICS 171, Fall 2005.
Intelligent Agents Chapter 2 ICS 171, Fall 2005.
Intelligent Agents Chapter 2.
Rational Agents (Chapter 2)
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Introduction to AI. H.Feili, 1 Introduction to Artificial Intelligence LECTURE 2: Intelligent Agents What is an intelligent agent?
Artificial Intelligence
CHAPTER 2 Intelligent Agents. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Intelligent Agents Chapter 2 Some slide credits to Hwee Tou Ng (Singapore)
Lection 3. Part 1 Chapter 2 of Russel S., Norvig P. Artificial Intelligence: Modern Approach.
Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Artificial Intelligence.
Intelligent Agents Chapter 2. CIS Intro to AI - Fall Outline  Brief Review  Agents and environments  Rationality  PEAS (Performance measure,
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Intelligent Agents Chapter 2. Agents An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment.
Intelligent Agents Chapter 2. How do you design an intelligent agent? Intelligent agents perceive environment via sensors and act rationally on them with.
CE An introduction to Artificial Intelligence CE Lecture 2: Intelligent Agents Ramin Halavati In which we discuss.
Instructional Objective  Define an agent  Define an Intelligent agent  Define a Rational agent  Discuss different types of environment  Explain classes.
Rational Agency CSMC Introduction to Artificial Intelligence January 8, 2007.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
1/23 Intelligent Agents Chapter 2 Modified by Vali Derhami.
Chapter 2 Agents. Intelligent Agents An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment.
Lecture 2: Intelligent Agents Heshaam Faili University of Tehran What is an intelligent agent? Structure of intelligent agents Environments.
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 2 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
Intelligent Agents Chapter 2. How do you design an intelligent agent? Definition: An intelligent agent perceives its environment via sensors and acts.
Intelligent Agents. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types.
CSC AI Intelligent Agents.
Artificial Intelligence Programming Spring 2016
Artificial Intelligence
Artificial Intelligence
Intelligent Agents Chapter 2.
Intelligent Agents.
Artificial Intelligence Lecture No. 5
Class #2 – Tuesday, September 6
Intelligent Agents Chapter 2.
Artificial Intelligence (CS 461D)
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Hong Cheng SEG4560 Computational Intelligence for Decision Making Chapter 2: Intelligent Agents Hong Cheng
Intelligent Agents Chapter 2.
© James D. Skrentny from notes by C. Dyer, et. al.
Introduction to Artificial Intelligence
Class #2 – Tuesday, September 7
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
EA C461 – Artificial Intelligence Problem Solving Agents
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Artificial Intelligence
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Artificial Intelligence
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Presentation transcript:

AI as the Design of Agents = a unifying view for the bag of techniques that AI encompasses Tuomas Sandholm Carnegie Mellon University Computer Science Department

An agent and its environment percepts actions ? agent sensors effectors

How to design an intelligent agent? Definition: An agent perceives its environment via sensors and acts in that environment with its effectors. Hence, an agent gets percepts one at a time, and maps this percept sequence to actions (one action at a time) Properties: Autonomous Interacts with other agents plus the environment Reactive to the environment Pro-active (goal-directed)

Examples of agents in different types of applications Agent type Percepts Actions Goals Environment Medical diagnosis system Symptoms, findings, patient's answers Questions, tests, treatments Healthy patients, minimize costs Patient, hospital Satellite image analysis system Pixels of varying intensity, color Print a categorization of scene Correct categorization Images from orbiting satellite Part-picking robot   Pixels of varying intensity Pick up parts and sort into bins Place parts in correct bins Conveyor belts with parts Refinery controller Temperature, pressure readings Open, close valves; adjust temperature Maximize purity, yield, safety Refinery Interactive English tutor Typed words Print exercises, suggestions, corrections Maximize student's score on test Set of students

Definition of ideal rational agent Ideal Rational Agent: For each possible percept sequence, such an agent does whatever action is expected to maximize its performance measure, on the basis of the evidence provided by the percept sequence and whatever built-in knowledge the agent has. What do you think? Is this an acceptable definition? Not looking left when crossing the street: If I don’t see a car coming from the left, it is rational to cross the street? No. Should also consider taking information gathering actions. Bounded rationality Limited/costly computation time Limited/costly memory …

Agent’s strategy Agent’s strategy is a mapping from percept sequence to action How to encode an agent’s strategy? Long list of what should be done for each possible percept sequence vs. shorter specification (e.g. algorithm)

WARNING: Might not get what you ask for in the performance measure Cleaning robot Pick up as much trash as possible Vehicle route optimization Maximize utilizations => Driving fully loaded Capitalizing on oddities in tariff list => Renegotiation Don’t include solution method in the criterion

agent = architecture + program This course concentrates on the program Physical agents vs. software agents (software agents = softbots)

Skeleton agent function SKELETON-AGENT (percept) returns action static: memory, the agent’s memory of the world memory  UPDATE-MEMORY(memory,percept) action  CHOOSE-BEST-ACTION(memory) memory  UPDATE-MEMORY(memory, action) return action On each invocation, the agent’s memory is updated to reflect the new percept, the best action is chosen, and the fact that the action was taken is also stored in the memory. The memory persists from one invocation to the next. Input = Percept, not history NOTE: Performance measure is not part of the agent

Examples of how the agent function can be implemented Table-driven agent Simple reflex agent Reflex agent with internal state Agent with explicit goals Utility-based agent More sophisticated

1. Table-driven agent Problems function TABLE-DRIVEN-AGENT (percept) returns action static: percepts, a sequence, initially empty table, a table, indexed by percept sequences, initially fully specified append percept to the end of percepts action  LOOKUP(percepts, table) return action An agent based on a prespecified lookup table. It keeps track of percept sequence and just looks up the best action Problems Huge number of possible percepts (consider an automated taxi with a camera as the sensor) => lookup table would be huge Takes long time to build the table Not adaptive to changes in the environment; requires entire table to be updated if changes occur

2. Simple reflex agent Differs from the lookup table based agent is that the condition (that determines the action) is already higher-level interpretation of the percepts Percepts could be e.g. the pixels on the camera of the automated taxi

Condition - action rules Simple Reflex Agent sensors What the world is like now What action I should do now Condition - action rules effectors Environment function SIMPLE-REFLEX-AGENT(percept) returns action static: rules, a set of condition-action rules state  INTERPRET-INPUT (percept) rule  RULE-MATCH (state,rules) action  RULE-ACTION [rule] return action First match. No further matches sought. Only one level of deduction. A simple reflex agent works by finding a rule whose condition matches the current situation (as defined by the percept) and then doing the action associated with that rule.

Simple reflex agent… Table lookup of condition-action pairs defining all possible condition-action rules necessary to interact in an environment e.g. if car-in-front-is-breaking then initiate breaking Problems Table is still too big to generate and to store (e.g. taxi) Takes long time to build the table No knowledge of non-perceptual parts of the current state Not adaptive to changes in the environment; requires entire table to be updated if changes occur Looping: Can’t make actions conditional

3. Reflex agent with internal state sensors What the world is like now What action I should do now Condition - action rules effectors Environment State How the world evolves What my actions do

Reflex agent with internal state … function REFLEX-AGENT-WITH-STATE (percept) returns action static: state, a description of the current world state rules, a set of condition-action rules state  UPDATE-STATE (state, percept) rule  RULE-MATCH (state, rules) action  RULE-ACTION [rule] state  UPDATE-STATE (state, action) return action A reflex agent with internal state works by finding a rule whose condition matches the current situation (as defined by the percept and the stored internal state) and then doing the action associated with that rule.

Reflex agent with internal state … Encode “internal state of the world to remember the past as contained in earlier percepts Needed because sensors do no usually give the entire state of the world at each input, so perception of the environment is captured over time. “State” used to encode different “world states” that generate the same immediate percept Requires ability to represent change in the world with/without the agent one possibility is to represent just the latest state, but then cannot reason about hypothetical courses of action Example: Rodney Brook’s Subsumption Architecture. Main idea: build complex intelligent robots by decomposing behaviors into a hierarchy of skills, each completely defining a complete percept-action cycle for one very specific task. For example, avoiding contact, wandering, exploring, recognizing doorways, etc. Each behavior is modeled by a finite-state machine with a few states (though each state may correspond to a complex function or module). Behaviors are loosely-coupled, asynchronous interactions

4. Agent with explicit goals sensors What the world is like now What action I should do now Goals effectors Environment State How the world evolves What my actions do What it will be like if I do action A

Agent with explicit goals … Choose actions so as to achieve a (given or computed) goal = a description of desirable situations. e.g. where the taxi wants to go Keeping track of the current state is often not enough – need to add goals to decide which situations are good Deliberative instead of reactive May have to consider long sequences of possible actions before deciding if goal is achieved – involves considerations of the future, “what will happen if I do…?” (search and planning) More flexible than reflex agent. (e.g. rain / new destination) In the reflex agent, the entire database of rules would have to be rewritten

5. Utility-based agent sensors Environment effectors What the world is like now What action I should do now Utility effectors Environment State How the world evolves What my actions do What it will be like if I do action A How happy I will be in such as a state

Utility-based agent … When there are multiple possible alternatives, how to decide which one is best? A goal specifies a crude destination between a happy and unhappy state, but often need a more general performance measure that describes “degree of happiness” Utility function U: State  Reals indicating a measure of success or happiness when at a given state Allows decisions comparing choice between conflicting goals, and choice between likelihood of success and importance of goal (if achievement is uncertain)

Properties of environments

Properties of environments Accessible (observable) : The agent’s sensory apparatus gives it access to the complete state of the environment Deterministic: The next state of the environment is completely determined by the current state and the actions selected by the agent Subjective non-determinism - Limited memory (poker) - Too complex environment to model directly (weather, dice) - Inaccessibility Episodic: The agent’s experience is divided into independent “episodes,” each episode consisting of agent perceiving and then acting. Quality of action depends just on the episode itself, because subsequent episodes do not depend on what actions occur in previous episodes.  Do not need to think ahead

Properties of environments … Static: If the environment can change while the agent is deliberating, then the environment is dynamic; otherwise it’s static. Discrete: There are a limited number of distinct, clearly defined percepts and actions we say that environment is discrete. Need to worry about time Dynamic Need to observe while deliberating

Environment Accessible Deterministic Episodic Static Discrete Chess with a clock Yes No Semi Chess without a clock Poker Backgammon Taxi driving Medical diagnosis system Image-analysis system Part-picking robot Refinery controller Interactive English tutor

Running the agents and the environment procedure RUN-ENVIRONMENT (state, UPDATE-FN, agents, termination) inputs: state, the initial state of the environment UPDATE-FN, function to modify the environment agents, a set of agents termination, a predicate to test when we are done repeat for each agent in agents do PERCEPT[agent]  GET-PERCEPT(agent,state) end ACTION[agent]  PROGRAM[agent] (PERCEPT[agent]) state  UPDATE-FN(actions, agents, state) until termination (state)