Cosmology With The Lyα Forest

Slides:



Advertisements
Similar presentations
Tom Theuns Institute for Computational Cosmology, Durham, UK Department of Physics, Antwerp, Belgium Munich 2005 Reionization And the thermal history of.
Advertisements

Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica.
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
Matter Content of the Universe David Spergel March 2006 Valencia, Spain.
Cosmological Reionization Nick Gnedin. Co-starring Gayler Harford Katharina Kohler Peter Shaver Mike Shull Massimo Ricotti.
1 Cosmological Constraints on Active and Sterile Neutrinos Matteo Viel INAF/OATS & INFN/TS From Majorana to LHC: Workshop on the Origin of Neutrino Mass.
1 A VIEW ON THE MATTER POWER AT MEDIUM SCALES MATTEO VIEL INAF and INFN Trieste COSMOCOMP Trieste – 7 th September 2012.
Theoretical work on Cosmology and Structure Formation Massimo Ricotti.
Nikolaos Nikoloudakis Friday lunch talk 12/6/09 Supported by a Marie Curie Early Stage Training Fellowship.
COSMOLOGICAL SPECTROSCOPY OF THE HIGH REDSHIFT UNIVERSE: STATUS & PERSPECTIVES MATTEO VIEL INAF & INFN – Trieste HEIDELBERG JOINT ASTRONOMICAL COLLOQUIUM.
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Inflation, Expansion, Acceleration Two observed properties of the Universe, homogeneity and isotropy, constitute the Cosmological Principle Manifest in.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
Probing inflation, dark matter, dark energy, etc. using the Lyman-  forest Pat McDonald (CITA) Collaborators: Uros Seljak, Anze Slosar, Alexey Makarov,
WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation March, 2003 Zoltán Haiman.
Early times CMB.
Neutrinos and the large scale structure
Robust cosmological constraints from SDSS-III/BOSS galaxy clustering Chia-Hsun Chuang (Albert) IFT- CSIC/UAM, Spain.
Simona Gallerani Constraining reionization through quasar and gamma ray burst absorption spectra In collaboration with: T. Roy Choudhury, P. Dayal, X.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
What can we learn from galaxy clustering? David Weinberg, Ohio State University Berlind & Weinberg 2002, ApJ, 575, 587 Zheng, Tinker, Weinberg, & Berlind.
The Current State of Observational Cosmology JPO: Cochin(05/01/04)
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
Constraints on the neutrino mass by future precise CMB polarization and 21cm line observations Yoshihiko Oyama The Graduate University for Advanced Studies.
How can CMB help constraining dark energy? Licia Verde ICREA & Institute of space Sciences (ICE CSIC-IEEC)
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Cosmological Particle Physics Tamara Davis University of Queensland With Signe Riemer-Sørensen, David Parkinson, Chris Blake, and the WiggleZ team.
David Weinberg, Ohio State University Dept. of Astronomy and CCAPP The Cosmological Content of Galaxy Redshift Surveys or Why are FoMs all over the map?
MATTEO VIEL THE LYMAN-  FOREST AS A COSMOLOGICAL PROBE Contents and structures of the Universe – La Thuile (ITALY), 19 March 2006.
Observational constraints and cosmological parameters Antony Lewis Institute of Astronomy, Cambridge
Using Baryon Acoustic Oscillations to test Dark Energy Will Percival The University of Portsmouth (including work as part of 2dFGRS and SDSS collaborations)
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Simulations of Lyα emission: fluorescence, cooling, galaxies Jordi Miralda Escudé ICREA University of Barcelona, Catalonia Berkeley, Collaborators:
THE LYMAN-  FOREST AS A PROBE OF FUNDAMENTAL PHYSICS MATTEO VIEL Shanghai, 16 March Cosmological significance of the Lyman-  forest 2. LUQAS:
Lyman- Emission from The Intergalactic Medium
Probing cosmic structure formation in the wavelet representation Li-Zhi Fang University of Arizona IPAM, November 10, 2004.
Vatican 2003 Lecture 20 HWR Observing the Clustering of Matter and Galaxies History: : galaxies in and around the local group are not distributed.
Lyman-  quasar spectra as cosmological probes MATTEO VIEL INAF & INFN – Trieste.
1 Astroparticle Physics in Intergalactic Space Matteo Viel – INAF Trieste APP14 – Amsterdam, 24 th June 2014.
Radiative Transfer Simulations The Proximity Effect of LBGs: Antonella Maselli, OAArcetri, Firenze, Italy Collaborators: A.Ferrara, M. Bruscoli, S. Marri.
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
MATTEO VIEL STRUCTURE FORMATION INAF and INFN Trieste (Italy) SISSA – 8 th and 11 th March 2011 Lecture 3.
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
Cheng Zhao Supervisor: Charling Tao
Neutrinos and Large-Scale Structure
Cosmological Structure with the Lyman Alpha Forest. Jordi Miralda Escudé ICREA, Institut de Ciències del Cosmos University of Barcelona, Catalonia Edinburgh,
Gamma-ray emission from warm WIMP annihilation Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Yixian Cao, Jie Liu, Liang Gao,
Summary Neta A. Bahcall Princeton University
Jan Hamann Rencontres de Moriond (Cosmology) 21st March 2016
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological analysis of the DR12 galaxy sample arXiv:
Sterile Neutrinos and WDM
Martin Haehnelt, Matteo Viel, Volker Springel
Neutrino Masses in Cosmology
The Cosmic Microwave Background and the WMAP satellite results
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
Cosmology from Large Scale Structure Surveys
Lyman α – impact of the intergalactic medium
Images: M. Blanton. Images: M. Blanton Figures: M. Blanton & SDSS.
Gamma-ray emission from warm WIMP annihilation
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Presentation transcript:

Cosmology With The Lyα Forest David Weinberg, Ohio State Astronomy and CCAPP Results from the SDSS-III BOSS Lyα Forest Baryon acoustic oscillations (BAO): J. Bautista, M. Blomqvist, N. Busca, T. Delubac, H. du Mas des Bourboux A. Font-Ribera, J. Guy, D. Kirkby, P. McDonald, J. Miralda-Escude, M. Pieri, J. Rich, A. Slosar 1-d power spectrum: N. Palanque-Delabrouille, C. Yèche, J. Baur, A. Borde, J.-M. Le Goff, C. Magneville, G. Rossi, M. Viel

Cosmology With The Lyα Forest David Weinberg, Ohio State Astronomy and CCAPP Best probe of expansion and matter clustering at z = 2 – 4 (together with CMB lensing) Observational accessibility Simplicity of first-order physical interpretation Best probe of primordial power spectrum on ~ Mpc scales (together with dwarf galaxies/strong lensing/tidal streams) Primordial structure not erased by non-linearity Neutrino masses, warm dark matter

Lynds 1971, Kitt Peak 2.2m Songaila & Cowie 1994, Keck 10m

Mid-1990s: Properties of Lyα forest well explained by 3-d cosmological hydro simulations Cen, Miralda-Escudé, Ostriker, Rauch 1994 Zhang, Anninos, Norman 1995 Hernquist, Katz, Weinberg, Miralda-Escudé 1996 Bi & Davidsen 1997; Hui & Gnedin 1997 Hernquist et al. 1996 Katz et al. 1996

Power-law temperature-density relation => Lyα absorption is a local non-linear map of baryonic matter density F ≈ exp [- A (1+δ)1.6 ] Fluctuating Gunn-Peterson Approximation (FGPA) Weinberg, Katz, & Hernquist 1997 Croft, Weinberg, Katz & Hernquist 1998 Density & velocity fields IGM parameters Cosmological parameters

Line-of-sight Lyα power spectrum is proportional to 1-d matter P(k) R. Croft, Weinberg, Katz, Hernquist ++ P. McDonald, Miralda-Escudé, Seljak ++ With a sufficiently large, dense survey, one can measure 3-d structure and BAO in the Lyα forest M. White 2003 McDonald & Eisenstein 2007 And in QSO-Lyα cross-correlations Font-Ribera, Kirkby, Busca et al. 2014 Seljak, Makarov, McDonald, Trac 2006

SDSS-III BOSS: 3-d correlations in the Lyman-α forest Slosar, Font-Ribera, Pieri et al. 2011

SDSS-III BOSS: 3-d correlations in the Lyman-α forest Figure: N. Busca Figure: A. Slosar

BAO in BOSS DR12 Lyα forest auto-correlation line-of-sight BAO in BOSS DR12 Lyα forest auto-correlation Measures H(z) to 3.4% DA(z) to 5.7% Best combo to 2.5% At effective z = 2.3 transverse Bautista, Busca, Guy et al. 2017 DA = L / θ ; H = c Δz / L

Combined constraint is ~ 2.3σ from best Planck ΛCDM model. Combined with BOSS DR12 QSO - Lyα cross-correlation sharpens precision to 2.5% on H(z) 3.3% on DA(z) Combined constraint is ~ 2.3σ from best Planck ΛCDM model. Hard to explain with new physics: DA and (cz/H) off in opposite directions. Ensemble of BAO data consistent with Planck ΛCDM. du Mas des Bourboux, Le Goff, Blomqvist et al. 2017

High-precision measurement of 1-d P(k) from ensemble of BOSS spectra, z = 2.2 – 4.4 Palanque-Delabrouille, Yèche, Borde et al. 2013

Non-zero neutrino mass suppresses linear P(k) on Lyα forest scales relative to CMB. Rossi, Palanque-Delabrouille, Borde et al. 2015

Impact on flux P(k) is few % for mν ~ 0.5 eV Non-zero neutrino mass suppresses linear P(k) on Lyα forest scales relative to CMB. Impact on flux P(k) is few % for mν ~ 0.5 eV Rossi, Palanque-Delabrouille, Borde et al. 2015

For Planck CMB, high Σmν implies low σ8, high Ωm. Blue = CMB Red = Lyα Palanque-Delabrouille, Yèche, Baur et al. 2015 For Planck CMB, high Σmν implies low σ8, high Ωm. Lyα P(k) measures these independent of CMB. Combined 95% C.L. constraint is Σmν < 0.12 eV. Some tension between CMB and Lyα value of ns.

Warm dark matter suppresses small scale P(k) Larger suppression at higher redshift 2.5 keV 5 keV Baur, Palanque-Delabrouille, Yeche, Magneville, Viel 2016

Thermal relic 95% C.L. lower limit of 3.0 keV BOSS DR9 1-d P(k): Thermal relic 95% C.L. lower limit of 3.0 keV Baur, Palanque-Delabrouille, Yèche, Magneville, Viel 2016

Iršič, Viel, Haehnelt++ 2017: High-res data => mwdm > 5.3 keV Baur, P.-D., Yèche++ 2017 Higher resolution data provide greater leverage on WDM, especially at high z. Iršič, Viel, Haehnelt++ 2017: High-res data => mwdm > 5.3 keV Baur, P.-D., Yèche++ 2017: Compared to BOSS, high-res data show suppression, could be WDM or IGM physics Iršič, Viel, Haehnelt++ 2017

DESI: 700,000 Lyα QSOs (z > 2.1) (vs. 158,000 for BOSS) DESI Collaboration 2016

The “nuisance parameters” are astrophysically interesting: Hydrogen and helium reionization Sources of the ionizing background radiation Heating mechanisms of the diffuse intergalactic medium Nature of high column density absorbers & metal-line systems Influence of CDM-baryon streaming velocities on Lyα forest Density & velocity fields IGM parameters Cosmological parameters

Cosmology With The Lyα Forest Best probe of expansion and matter clustering at z = 2 – 4 Observational accessibility Simplicity of first-order physical interpretation BAO in slight tension w/ ΛCDM, probably statistical fluke Best probe of primordial power spectrum on ~ Mpc scales Primordial structure not erased by non-linearity Consistent w/ΛCDM, limits neutrino or WDM suppression Challenges Removal of instrumental/observational signatures Highly accurate modeling of IGM physics