The Benzene Dimer In collaboration with the FHI in Berlin Melanie

Slides:



Advertisements
Similar presentations
Towards a Spectroscopically Flexible Water Dimer Potential Energy Surface Ross E. A. Kelly, and Jonathan Tennyson Department of Physics & Astronomy University.
Advertisements

Institut für Physikalische Chemie & Elektrochemie, Lehrgebiet A STRUCTURE OF THE BENZENE DIMER - GOVERNED BY DYNAMICS. MELANIE SCHNELL, Center for Free-Electron.
Fourier Transform Infrared Emission Spectra of MgF 2 Peter Bernath, Daniel Frohman Department of Chemistry and Biochemistry Old Dominion University, Norfolk,
The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,
Hamiltonians for Floppy Molecules (as needed for FIR astronomy) A broad overview of state-of-the-art successes and failures for molecules with large amplitude.
The Golden Ratio BY MS. HANCOCK
Ying Guo, Xibin Gu, Fangtong Zhang, Ralf I. Kaiser Department of Chemistry University of Hawai’i Honolulu, HI 96822
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
H ν if = E f – E i = ΔE if S(f ← i) = ∑ A | ∫ Φ f * μ A Φ i dτ | 2 ODME of H and μ A μ fi = Spectroscopy Quantum Mechanics f i MMMM M ∫ Φ f * μ A Φ i dτ.
Vibrational Spectroscopy
INFRARED SPECTROSCOPIC STUDY ON FERMI RESONANCE OF THE EXCESS PROTON VIBRATION IN BINARY CLUSTERS Ryunosuke SHISHIDO, Asuka FUJII Department of Chemistry,
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Outline 1. Introduction 2. User community and accuracy needs 3. Which large-amplitude motions 4. Which tools = which sym. operations 5. Example (in progress)
Structures and Spin States of Transition-Metal Cation Complexes with Aromatic Ligands Free Electron Laser IRMPD Spectra Robert C. Dunbar Case Western Reserve.
Water clusters observed by chirped-pulse rotational spectroscopy: Structures and hydrogen bonding Cristobal Perez, Matt T. Muckle, Daniel P. Zaleski, Nathan.
Ab Initio and DFT Calculations for the Vibrational Frequencies and Barrier to Planarity of Cyclopentene and its Deuterated Isotopomers Abdulaziz Al-Saadi.
1 The Structure and Ring Puckering Barrier of Cyclobutane: A Theoretical Study Sotiris S. Xantheas, Thomas A. Blake Environmental Molecular Sciences Laboratory.
Theoretical Modelling of the Water Dimer: Progress and Current Direction Ross E. A. Kelly, Matt Barber, & Jonathan Tennyson Department of Physics & Astronomy.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.
Important concepts in IR spectroscopy
Deuteron Polarimetry at COSY September 13, 2007 D.Eversheim, PSTP Some Introductory Remarks Some Experimental Details Concerning EDDA Deuteron Polarimetry.
64 th OSU International Symposium on Molecular Spectroscopy.
Department of Chemistry, University of Georgia, Athens, GA National Science Foundation Infrared.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Molecules undergoing extreme rotation. Figure 2. Angular distribution of the main fragments observed in the Multi Electron Dissociative Ionization (MEDI)
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
LASER-INDUCED FLUORESCENCE (LIF) SPECTROSCOPY OF CYCLOHEXOXY
Torsion-Rotation Program for Six-Fold Barrier Molecules Toluene MW Fit Vadim V. Ilyushin 1, Zbigniew Kisiel 2, Lech Pszczolkowski 2, Heinrich Mäder 3,
Microwave Study of a Hydrogen-Transfer-Triggered Methyl-Group Internal Rotation in 5-Methyltropolone Vadim V. Ilyushin a, Emily A. Cloessner b, Yung-Ching.
Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.
THEORETICAL INVESTIGATION OF LARGE AMPLITUDE MOTION IN THE METHYL PEROXY RADICAL Gabriel Just, Anne McCoy and Terry Miller The Ohio State University.
Daisuke Ando, * Susumu Kuma, ** Masaaki Tsubouchi,** and Takamasa Momose** *Kyoto University, JAPAN **The University of British Columbia, CANADA SPECTROSCOPY.
Vibration-rotation-tunneling states of the benzene dimer: An ab initio study. At the Fritz-Haber Institute Berlin: A. van der Avoird, P. R. Bunker, M.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
N 2 -CO 2 Consequences for Global Warming? Daniel Frohman Wesleyan University TH01 June 22, 2010.
Carbon dioxide clusters: (CO 2 ) 6 to (CO 2 ) 13 J. Norooz Oliaee, M. Dehghany, N. Moazzen-Ahmadi Department of Physics and Astronomy University of Calgary.
Spectroscopic and Theoretical Determination of Accurate CH/  Interaction Energies in Benzene-Hydrocarbon Clusters Asuka Fujii, Hiromasa Hayashi, Jae Woo.
An Analytic 3-Dimensional Potential Energy Surface for CO 2 -He and Its Predicted Infrared Spectrum Hui Li, Robert J. Le Roy υ International Symposium.
The Origin Band of the b – a System of CH 2 Gregory Hall, and Trevor Sears Department of Chemistry Brookhaven National Laboratory Bor-Chen Chang Department.
M. Dehghany, M. Afshari, J. N. Oliaee, N. Moazzen-Ahmadi Department of Physics & Astronomy, University of Calgary, Canada A. R. W. MCKELLAR Steacie Institute.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Analysis of bands of the 405 nm electronic transition of C3Ar
Pure rotational spectrum of the “non-polar” dimer of Formic acid
1Kanagawa Institute of Technology 3Georgia Southern University
International Symposium on Molecular Spectroscopy
60th International Symposium on Molecular Spectroscopy
Jacob T. Stewart and Bradley M
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
How methyl tops talk with each other
מיחזור במערכת החינוך.
JILA F. Dong1, M. A. Roberts, R. S. Walters and D. J. Nesbitt
Singlet-Triplet Coupling and the Non-Symmetric Bending Modes
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
Terahertz spectroscopy of the ground state of methylamine (CH3NH2)
Fourier Transform Infrared Spectral
Unimolecular Dissociation of the Methylsulfonyl Radical and its CH3OSO Isomer Laurie J. Butler, Department of Chemistry, The University of Chicago, Chicago,
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Jay C. Amicangelo, Ian Campbell, and Joshua Wilkins
Unimolecular Dissociation of the Methylsulfonyl Radical and its CH3OSO Isomer Laurie J. Butler, Department of Chemistry, The University of Chicago, Chicago,
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

The Benzene Dimer In collaboration with the FHI in Berlin Melanie Schnell Undine Erlekam Gerard Meijer Gert von Helden

Two key experimental results IT IS POLAR: Electric deflection of a Bz2 molecular beam: JCP 63, 1419 (1975) RINGS ARE NOT EQUIVALENT: Raman: JCP 97, 2189 (1992). IR: JCP 124, 171101 (2006). Recent ab initio calculations Cap Stem Szalewicz group: JPC A 110,10345 (2006) Sherrill group: JACS 124, 10887 (2002) DiStasio, von Helden, Steele and Head-Gordon: CPL 437, 277 (2007)

Global minimum has 288 versions Ab initio results Global minimum Three saddle points of index 1 STEM CAP De = 980 cm-1 12 kJ/mol 2.8 kcal/mol 0.12 eV 5 cm-1 39 cm-1 147 cm-1 Cap Torsion Stem Bend Stem Torsion Global minimum has 288 versions Chosen tunneling pathways have spectroscopic consequencies. Use symmetry to probe this.

Global minimum has 288 versions Ab initio results Global minimum Three saddle points of index 1 STEM CAP De = 980 cm-1 12 kJ/mol 2.8 kcal/mol 0.12 eV 5 cm-1 39 cm-1 147 cm-1 Cap C6 Torsion Stem Bend Stem C6 Torsion Global minimum has 288 versions Chosen tunneling pathways have spectroscopic consequencies. Use symmetry to probe this.

MS group for nontunneling dimer 1’ 2’ 6’ 3’ 5’ 4’ 4 3 2 5 6 1 (C1-H1) MS group is Cs(M) E (14)(23)(56)* A' 1 1 A'' 1 -1 Allowed transitions A' A'' odd Kc A'' even Kc A' 6 cm-1 16 cm-1 38 cm-1

MS group allowing for cap-C6-torsion 1’ 2’ 6’ 3’ 5’ 4’ 4 3 2 5 6 1 As for benzene-argon, MS group is now C6v(M) E (123456) (135)(246) (14)(25)(36) (26)(35)* (14)(23)(56)* (165432) (153)(264) (31)(46)* (25)(34)(61)* (42)(51)* (36)(45)(12)* 6 cm-1 16 cm-1 38 cm-1

The correlation of C6v(M) to Cs(M) A’+A’’ Cs(M)

The reverse correlation of Cs(M) to C6v(M) Statistical weights for (12C6H6)2 in parentheses Cs(M) C6v(M) If V6 barrier = 0 Etorsion = F Ki2 E ΔE 3 1 Ki 3 2 1 9F 5 B1(896) E2(1152) E1(1408) 4F F A´´ (4096) A2(640) If V6 barrier high (>20 cm-1) get ΔE 1 2 B2(896) E2(1152) E1(1408) A1(640) 3 A´ (4096) `` High barrier 1-3-1 pattern’’ St. wt. ratios: 5/11/9/7 St. wts same for 12C6H6 cap on C6D6 stem

Alternatively, suppose is C2v at equilibrium 1’ Allowed transitions: A1 A2 B1 B2 2’ 6’ 3’ 5’ 4’ KaKc symmetry ee A1 eo A2 oo B1 oe B2 4 5 6 3 2 1 Rigid molecule MS group is now C2v(M) E (14)(25)(36)(2’6’)(3’5’) (14)(23)(56)* (26)(35)(2’6’)(3’5’)* A1 1 1 1 1 A2 1 1 -1 -1 B1 1 -1 -1 1 B2 1 -1 1 -1 But now when we introduce cap torsion the MS group is G24

The structure of the group G24 G24 = C6v(M) x {E,(2´6´)(3´5´)} {E,(2´6´)(3´5´)} ------------------------------- E (2´6´)(3´5´) As 1 1 Aa 1 -1 The 12 irreps are called A1s, A1a, A2s, A2a, etc.

Correlation of C2v(M) to G24 Statistical weights for (12C6H6)2 in parentheses C2v(M) G24 C2v(M) G24 KaKc KaKc B1s(560) E2a(432) E1s(880) A2a(240) B2a(336) E2s(720) E1a(528) oo B1 (2112) ee A1 (1984) A1s(400) B1a(336) E2s(720) E1a(528) A2s(400) B2s(560) E2a(432) E1s(880) A1a(240) oe B2 (2112) eo A2 (1984) St. wt. ratios: 15/55/27/35 St. wt. ratios: 25/33/45/21

Correlation Cs(M) to C6v(M) to G24 Statistical weights for (12C6H6)2 in parentheses FOR Ka EVEN Cs(M) C6v(M) G24 v(bend)=0 + v(bend)=1 B1(896) E2(1152) E1(1408) B1a(336) + B1s(560) E2s(720) + E2a(432) E1a(528) + E1s(880) A2s(400) + A2a(240) A´´ (4096) A2(640) B2(896) E2(1152) E1(1408) A1(640) B2a(336) + B2s(560) E2s(720) + E2a(432) E1a(528) + E1s(880) A1s(400) + A1a(240) A´ (4096) St. wt. ratios: 5/11/9/7 5/3 or 3/5

h6-h6 Cs(M) C6v(M) C2v G24 Cs(M) C6v(M) G24 even Ka odd Ka even Ka 21 45 33 25 odd Ka 35 27 55 15 7 9 11 5 Cs(M) C6v(M) G24 v=0/1 7 9 11 5 3/5 5/3 even Ka 7 9 11 5 5/3 3/5 odd Ka

MS group if stem-C6-torsion tunneling observed is G144 1´ 2´ 3´ 4´ 4 3 2 1 6´ 5´ 5 6 (1´2´3´4´5´6´) and similar operations become feasible MS group is G144 where G144 = Gcap x Gstem See Spirko et al: JCP 111, 572 (1999) C6v(M) D6(M) [A1,A2,B1,B2,E1,E2] [A1,A2,B1,B2,E1,E2] 6 cm-1 16 cm-1 38 cm-1 Irreducible representations of G144: A1xA1, A1xA2, etc. G144 has 16 1D, 16 2D, and 4 4D irreducible representations

h6-h6 Cs(M) C6v(M) C2v G24 Cs(M) C6v(M) G24 G24 G144 even Ka odd Ka 21 45 33 25 odd Ka 35 27 55 15 7 9 11 5 Cs(M) C6v(M) G24 v=0/1 G24 G144 7 9 11 5 3/5 5/3 even Ka 13 9 11 7 even Ka 7 9 11 5 5/3 3/5 1 9 11 3 odd Ka odd Ka

h6-h6 h6-d6 cap Cs(M) C6v(M) C2v G24 Cs(M) C6v(M) G24 G24 G144 even Ka 21 45 33 25 odd Ka 35 27 55 15 7 9 11 5 7 9 11 5 28 45 44 25 h6-d6 cap 35 36 55 20 Cs(M) C6v(M) G24 v=0/1 G24 G144 7 9 11 5 7 9 11 5 3/5 5/3 4/5 5/4 even Ka 13 9 11 7 92 116 124 73 even Ka 7 9 11 5 7 9 11 5 5/3 3/5 1 9 11 3 38 116 124 46 odd Ka odd Ka

d6-h6 d6-d6 cap Cs(M) C6v(M) C2v G24 Cs(M) C6v(M) G24 G24 G144 even Ka 357 476 1240 1240 696 928 650 650 odd Ka 595 595 744 992 1160 1160 390 520 119 248 232 130 119 248 232 130 d6-d6 cap Cs(M) C6v(M) G24 v=0/1 G24 G144 119 248 232 130 119 248 232 130 3/5 5/3 4/5 5/4 even Ka 13 9 11 7 92 116 124 73 even Ka 119 248 232 130 119 248 232 130 5/3 3/5 5/4 4/5 1 9 11 3 38 116 124 46 odd Ka odd Ka

h6-h6 h6-d6 d6-h6 d6-d6 Cs(M) C6v(M) G24 G24 G144 Cs(M) C6v(M) G24 Cap-stem Cs(M) C6v(M) G24 G24 G144 7 9 11 5 7 9 11 5 3/5 5/3 4/5 5/4 13 9 11 7 92 116 124 73 h6-h6 even Ka even Ka 1 9 11 3 38 116 124 46 7 9 11 5 h6-d6 7 9 11 5 5/3 3/5 odd Ka odd Ka Cs(M) C6v(M) G24 G24 G144 119 248 232 130 119 248 232 130 3/5 5/3 4/5 5/4 13 9 11 7 92 116 124 73 even Ka even Ka d6-h6 1 9 11 3 38 116 124 46 119 248 232 130 119 248 232 130 5/3 3/5 5/4 4/5 d6-d6 odd Ka odd Ka