Rolle’s Theorem and the Mean Value Theorem

Slides:



Advertisements
Similar presentations
1 Local Extrema & Mean Value Theorem Local Extrema Rolle’s theorem: What goes up must come down Mean value theorem: Average velocity must be attained Some.
Advertisements

Rolle’s Theorem and the Mean Value Theorem3.2 Teddy Roosevelt National Park, North Dakota Greg Kelly, Hanford High School, Richland, WashingtonPhoto by.
Aim: Rolle’s Theorem Course: Calculus Do Now: Aim: What made Rolle over to his theorem? Find the absolute maximum and minimum values of y = x 3 – x on.
The Mean Value Theorem Lesson 4.2 I wonder how mean this theorem really is?
Section 3.2 – Rolle’s Theorem and the Mean Value Theorem
4.2 The Mean Value Theorem.
Rolle’s theorem and Mean Value Theorem ( Section 3.2) Alex Karassev.
Chapter 4: Applications of Derivatives Section 4.2: Mean Value Theorem
CHAPTER 3 SECTION 3.2 ROLLE’S THEOREM AND THE MEAN VALUE THEOREM
Problem of the Day (Calculator allowed)
Calculus 1 Rolle’s Theroem And the Mean Value Theorem for Derivatives Mrs. Kessler 3.2.
A car accelerates from a stop to 45 m/sec in 4 sec. Explain why the car must have been accelerating at exactly m/sec at some moment. 2 Do Now.
Fundamental Theorem of Calculus: Makes a connection between Indefinite Integrals (Antiderivatives) and Definite Integrals (“Area”) Historically, indefinite.
APPLICATIONS OF DIFFERENTIATION 4. We will see that many of the results of this chapter depend on one central fact—the Mean Value Theorem.
Calculus Date: 12/10/13 Obj: SWBAT apply Rolle’s and the Mean Value Thm derivatives of absolute.
3.2 Rolle’s Theorem and the Mean Value Theorem. After this lesson, you should be able to: Understand and use Rolle’s Theorem Understand and use the Mean.
Section 4.2 Mean Value Theorem What you’ll learn Mean Value Theorem Physical Interpretation Increasing and Decreasing Functions Other Consequences Why?
Section 5.5 The Intermediate Value Theorem Rolle’s Theorem The Mean Value Theorem 3.6.
Rolle’s Theorem/Mean-Value Theorem Objective: Use and interpret the Mean-Value Theorem.
AP Calculus Unit 4 Day 5 Finish Concavity Mean Value Theorem Curve Sketching.
If f (x) is continuous over [ a, b ] and differentiable in (a,b), then at some point, c, between a and b : Mean Value Theorem for Derivatives.
Calculus and Analytical Geometry Lecture # 15 MTH 104.
If f(x) is a continuous function on a closed interval x ∈ [a,b], then f(x) will have both an Absolute Maximum value and an Absolute Minimum value in the.
4.2A Rolle’s Theorem* Special case of Mean Value Theorem Example of existence theorem (guarantees the existence of some x = c but does not give value of.
4.2 The Mean Value Theorem.
4.2 - The Mean Value Theorem
3.2 Rolle’s Theorem and the
4.2 The Mean Value Theorem In this section, we will learn about:
Rolle’s theorem and Mean Value Theorem (Section 4.2)
Rolle’s Theorem/Mean-Value Theorem
3.2 Rolle’s Theorem and the Mean Value Theorem
4.2 The Mean Value Theorem State Standard
Hypothesis: Conclusion:
Lesson 63 Rolle’s Theorem and the Mean Value Theorem
Rolle’s Theorem & the Mean Value Theorem (3.2)
Table of Contents 25. Section 4.3 Mean Value Theorem.
Rolle’s Theorem Section 3.2.
Lesson 3.2 Rolle’s Theorem Mean Value Theorem 12/7/16
4.4 The Fundamental Theorem of Calculus
5-2 mean value theorem.
Increasing/decreasing and the First Derivative test
Copyright © Cengage Learning. All rights reserved.
Table of Contents 21. Section 4.3 Mean Value Theorem.
Local Extrema & Mean Value Theorem
Rolle’s Theorem and the Mean Value Theorem
Sec 2 Cont: Mean Value Theorem (MVT)
Mean Value & Rolle’s Theorems
CHAPTER 3 SECTION 3.2 ROLLE’S THEOREM AND THE MEAN VALUE THEOREM
3.2 Rolle’s Theorem and the
AP Calculus November 9-10, 2016 Mrs. Agnew
ROLLES THEOREM AND THE EXTREME VALUE THEOREM
1. Be able to apply The Mean Value Theorem to various functions.
4.6 The Mean Value Theorem.
Increasing, Decreasing, Constant
Section 3.2 Calculus AP/Dual, Revised ©2017
Section 4.2 Mean value theorem.
Copyright © Cengage Learning. All rights reserved.
Rolle's Theorem Objectives:
5.2 Mean Value Theorem for Derivatives
3.2 Rolle’s Theorem and the Mean Value Theorem
The Intermediate Value Theorem
§4.2 Mean value theorem(MVT)
Lesson 2: Mean Value Theorem
Chapter 5 Applications of Derivatives Section 5.2 Mean Value Theorem.
Rolle’s Theorem and the Mean Value Theorem
ROLLES THEOREM AND THE EXTREME VALUE THEOREM
Today in Calculus Go over homework Trig Review Mean Value Theorem
RAYAT SHIKSHAN SANSTHA’S S.M.JOSHI COLLEGE HADAPSAR, PUNE
Rayat Shikshan Sanstha’s S.M.Joshi College, Hadapsar -28
Do Now: Find all extrema of
Presentation transcript:

Rolle’s Theorem and the Mean Value Theorem

After this lesson, you should be able to: Understand and use Rolle’s Theorem Understand and use the Mean Value Theorem

Rolle’s Theorem If you connect from f (a) to f (b) with a smooth curve, a b f(a)=f(b) there will be at least one place where f ’(c) = 0

Rolle’s Theorem Rolle's theorem is an important basic result about differentiable functions. Like many basic results in the calculus it seems very obvious. It just says that between any two points where the graph of the differentiable function f (x) cuts the horizontal line there must be a point where f '(x) = 0. The following picture illustrates the theorem.

Rolle’s Theorem zero height If two points at the same _______ are connected by a continuous, differentiable function, then there has to be ________ place between those two points where the derivative, or slope, is _____. at least one zero

Rolle’s Theorem If 1) f (x) is continuous on [a, b], 2) f (x) is differentiable on (a, b), and 3) f (a) = f (b) then there is at least one value of x on (a, b), call it c, such that f ’(c) = 0. f is continuous on [a, b] differentiable on (a, b) f(a) = f(b) a b

Example Example 1 ( f is continuous and differentiable) Since , then Rolle’s Theorem applies… then, x = –1 , x = 0, and x = 1

Rolle’s Theorem Does Rolle’s Theorem apply? If not, why not? If so, find the value of c. Example 2

Rolle’s Theorem Does Rolle’s Theorem apply? If not, why not? If so, find the value of c. Example 3

Example Example 4 (Graph the function over the interval on your calculator) continuous on [-1, 1] not differentiable at 0 not differentiable on (-1, 1) f(-1) = 1 = f(1) Rolle’s Theorem Does NOT apply since

Rolle’s Theorem Does Rolle’s Theorem apply? If not, why not? If so, find the value of c. Example 5

Note When working with Rolle’s make sure you 1. State f(x) is continuous on [a, b] and differentiable on (a, b). 2. Show that f(a) = f(b). 3. State that there exists at least one x = c in (a, b) such that f ’(c) = 0. This theorem only guarantees the existence of an extrema in an open interval. It does not tell you how to find them or how many to expect. If YOU can not find such extrema, it does not mean that it can not be found. In most of cases, it is enough to know the existence of such extrema.

Mean Value Theorem- MVT The Mean Value Theorem is one of the most important theoretical tools in Calculus. It states that if f(x) is defined and continuous on the interval [a,b] and differentiable on (a,b), then there is at least one number c in the interval (a,b) (that is a<c<b) such that In other words, there exists a point in the interval (a,b) which has a horizontal tangent. In fact, the Mean Value Theorem can be stated also in terms of slopes. Indeed, the number is the slope of the line passing through (a, f(a)) and (b, f(b)). So the conclusion of the Mean Value Theorem states that there exists a point such that the tangent line is parallel to the line passing through (a, f(a)) and (b, f(b)).

(see Picture) The special case, when f(a) = f(b) is known as Rolle's Theorem. In this case, we have f '(c) =0.

Mean Value Theorem- MVT f If: f is continuous on [a, b], differentiable on (a, b) Then: there is a c in (a, b) such that a b

Example Example 6 (f is continuous and differentiable) MVT applies

“Peek”

Mean Value Theorem- MVT Note: ( ) The graph of f is rising a b

Mean Value Theorem- MVT Note: ( ) The graph of f is falling a b

Mean Value Theorem- MVT Note: ( ) The graph of f is level a b

Example Example 7 3

Finding a Tangent Line Example 8 Find all values of c in the open interval (a, b) such that c = 1

Application of MVT Example 9 When an object is removed from a furnace and placed in an environment with a constant temperature of 90o F, its core temperature is 1500o F. Five hours later the core temperature is 390o F. Explain why there must exist a time in the interval when the temperature is decreasing at a rate of 222o F per hour. Solution Let g(t) be the temperature of the object. Then g(0) = 1500, g(5) = 390 By MVT, there exists a time 0 <to <5, such that g’(to) = –222o F

Application of MVT Example 10 Two bicyclists begin a race at 8:00 AM. They both finish the race 2 hours and 15 minutes later. Prove that at some time during the race, the bicyclists are traveling at the same velocity. Proof Let Si(t) be the distance function of bicyclist i (i = 1, 2), and let S(t) = S1(t) – S2(t). Then S(0) = S(2.25) = 0 By Rolle’s Theore, there exists a time 0 <to <2.25, such that S’(to) = S1’(to) – S2’(to) = v1(to) – v2(to) = 0 It produces v1(to) = v2(to)

Homework Section 3.2 page 172 #7-11 odd, 15, 31, 33, 37, 53-56