Date of download: 12/24/2017 Copyright © ASME. All rights reserved.

Slides:



Advertisements
Similar presentations
Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Quantifying Function in the Early Embryonic Heart J Biomech Eng. 2013;135(4):
Advertisements

Date of download: 6/18/2016 Copyright © ASME. All rights reserved. From: The Envelope of Physiological Motion of the First Carpometacarpal Joint J Biomech.
Date of download: 6/26/2016 Copyright © ASME. All rights reserved. From: Method for Testing Motion Analysis Laboratory Measurement Systems J Biomech Eng.
Date of download: 7/2/2016 Copyright © ASME. All rights reserved. From: An Apparatus and Protocol to Measure Shoulder Girdle Strength J. Med. Devices.
Date of download: 7/6/2016 Copyright © ASME. All rights reserved. From: How Changing the Inversion/Eversion Foot Angle Affects the Nondriving Intersegmental.
Date of download: 7/9/2016 Copyright © ASME. All rights reserved. From: Movement of the Distal Carpal Row During Narrowing and Widening of the Carpal Arch.
Date of download: 9/16/2016 Copyright © ASME. All rights reserved. From: A MR Imaging Procedure to Measure Tarsal Bone Rotations J Biomech Eng. 2007;129(6):
Date of download: 9/19/2016 Copyright © ASME. All rights reserved. From: Use of Virtual, Interactive, Musculoskeletal System (VIMS) in Modeling and Analysis.
Date of download: 9/19/2016 Copyright © ASME. All rights reserved. From: Numerical Analysis for Elucidation of Nonlinear Frictional Characteristics of.
Date of download: 11/13/2016 Copyright © ASME. All rights reserved. From: Effects of Prosthetic Mismatch and Subscapularis Tear on Glenohumeral Contact.
Date of download: 10/5/2017 Copyright © ASME. All rights reserved.
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
From: A Helical Gear Pair Pocketing Power Loss Model
Date of download: 10/14/2017 Copyright © ASME. All rights reserved.
From: Effect of ACL Deficiency on MCL Strains and Joint Kinematics
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
From: Automatically Creating Design Models From 3D Anthropometry Data
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
From: Hemodynamics of the Mouse Abdominal Aortic Aneurysm
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
From: Three-Dimensional-Printing of Bio-Inspired Composites
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/11/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/14/2017 Copyright © ASME. All rights reserved.
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
Date of download: 12/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/17/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
From: The vertical horopter is not adaptable, but it may be adaptive
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
From: Interactive Feature Modeling for Reverse Engineering
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/28/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 12/30/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
Date of download: 1/5/2018 Copyright © ASME. All rights reserved.
Date of download: 1/23/2018 Copyright © ASME. All rights reserved.
Date of download: 3/5/2018 Copyright © ASME. All rights reserved.
Date of download: 3/6/2018 Copyright © ASME. All rights reserved.
Date of download: 3/8/2018 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 12/24/2017 Copyright © ASME. All rights reserved. From: Measurement and Description of Three-Dimensional Shoulder Range of Motion With Degrees of Freedom Interactions J Biomech Eng. 2014;136(8):084502-084502-6. doi:10.1115/1.4027665 Figure Legend: Boxplots representing the effects of movement series on maximal shoulder RoM volume with paired t-test. The series showing significant differences with each other are mentioned after one (p < 0.05) or two (p < 0.01) asterisks. The red crosses represent outliers.

Date of download: 12/24/2017 Copyright © ASME. All rights reserved. From: Measurement and Description of Three-Dimensional Shoulder Range of Motion With Degrees of Freedom Interactions J Biomech Eng. 2014;136(8):084502-084502-6. doi:10.1115/1.4027665 Figure Legend: Slices of average RoM volume for all series compared to the literature data. Subplots indicate the 2D rotation–elevation interaction every 45 deg of plane of elevation.

Date of download: 12/24/2017 Copyright © ASME. All rights reserved. From: Measurement and Description of Three-Dimensional Shoulder Range of Motion With Degrees of Freedom Interactions J Biomech Eng. 2014;136(8):084502-084502-6. doi:10.1115/1.4027665 Figure Legend: Example of hull construction for the first series of movements (elevations). (a) Poses during evolution of the movement defined by 3D angles. (b) and (c) Tetrahedra and nonconvex hull that encompasses all the poses, respectively.

Date of download: 12/24/2017 Copyright © ASME. All rights reserved. From: Measurement and Description of Three-Dimensional Shoulder Range of Motion With Degrees of Freedom Interactions J Biomech Eng. 2014;136(8):084502-084502-6. doi:10.1115/1.4027665 Figure Legend: Description of arm movement series relatively to the thorax with the arm reference frame and the corresponding axes of rotation. (a) “Elevation” series. (b) “Rotation” series. The seven vertical planes of elevation are seen from above. The maximal external, neutral, and maximal internal rotations of the arm are represented during elevation. “Plateau” indicates that elevation is stopped at 30 deg, 60 deg, 90 deg, 120 deg, 150 deg, and maximal elevation, while a maximal external–internal rotation is performed. Notes: For clarity, the arm is represented with extended elbow during internal–external rotations; however, in the reality, the elbow was bent at about 90 deg. The addition sign indicates that each combination of the right hand side is performed in all seven vertical planes of elevation.

Date of download: 12/24/2017 Copyright © ASME. All rights reserved. From: Measurement and Description of Three-Dimensional Shoulder Range of Motion With Degrees of Freedom Interactions J Biomech Eng. 2014;136(8):084502-084502-6. doi:10.1115/1.4027665 Figure Legend: (a) Individual and (b) average thoracohumeral RoM volumes, represented by 3D angle (ψ)–angle (θ)–angle (φ) hulls. Notes: The upper and lower boxes represent the thoracohumeral RoM from Klopčar's model [6] and Barnes's data [13], respectively. Vertical lines and planes indicate planes in which characteristic anatomical movement are realized.