extensions of the impedance concept: electron cloud

Slides:



Advertisements
Similar presentations
Using the real lattice and an improved model for the wake field, the extraction jitter can now be calculated more accurately. Assuming an injection jitter.
Advertisements

Electron-cloud instability in the CLIC damping ring for positrons H. Bartosik, G. Iadarola, Y. Papaphilippou, G. Rumolo TWIICE workshop, TWIICE.
March 14-15, 2007ECloud Feedback, IUCF1 Electron-Cloud Effects in Fermilab Booster K.Y. Ng Fermilab Electron-Cloud Feedback Workshop IUCF, Indiana March.
Ion instability at SuperKEKB H. Fukuma (KEK) and L. F. Wang (SLAC) ECLOUD07, 12th Apr. 2007, Daegu, Korea 1. Introduction 2. Ion trapping 3. Fast ion instability.
Helmholtz International Center for Oliver Boine-Frankenheim GSI mbH and TU Darmstadt/TEMF FAIR accelerator theory (FAIR-AT) division Helmholtz International.
R. Cimino COULOMB’05, Senigallia, Sept 15, Surface related properties as an essential ingredient to e-cloud simulations. The problem of input parameters:
E-cloud studies at LNF T. Demma INFN-LNF. Plan of talk Introduction ECLOUD Simulations for the DAFNE wiggler ECLOUD Simulations for build up in presence.
25-26 June, 2009 CesrTA Workshop CTA09 Electron Cloud Single-Bunch Instability Modeling using CMAD M. Pivi CesrTA CTA09 Workshop June 2009.
ILC damping ring Workshop, Dec 19, 2007, KEK, L. WANG Ecloud simulation 2007 ILC Damping Rings Mini-Workshop December, 2007 Lanfa Wang, SLAC.
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
Electron cloud simulations for SuperKEKB Y.Susaki,KEK-ACCL 9 Feb, 2010 KEK seminar.
Intensity limitations from combined effects and/or (un)conventional impedances Giovanni Rumolo thanks to Oliver Boine-Frankenheim and Frank Zimmermann.
Beam observation and Introduction to Collective Beam Instabilities Observation of collective beam instability Collective modes Wake fields and coupling.
Oliver Boine-Frankenheim, High Current Beam Physics Group Simulation of space charge and impedance effects Funded through the EU-design study ‘DIRACsecondary.
Electron cloud in the wigglers of ILC Damping Rings L. Wang SLAC ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 Cornell University.
FCC electron cloud study plan K. Ohmi (KEK) Mar FCC electron cloud study meeting CERN.
E-cloud studies at LNF T. Demma INFN-LNF. Plan of talk Introduction New feedback system to suppress horizontal coupled-bunch instability. Preliminary.
Improved electron cloud build-up simulations with PyECLOUD G. Iadarola (1),(2), G. Rumolo (1) (1) CERN, Geneva, Switzerland, (2) Università di Napoli “Federico.
Motivation and Overview David Rubin Cornell Laboratory for Accelerator-Based Sciences and Education.
Cesr-TA Simulations: Overview and Status G. Dugan, Cornell University LCWS-08.
Elias Métral, ICFA-HB2004, Bensheim, Germany, 18-22/10/ E. Métral TRANSVERSE MODE-COUPLING INSTABILITY IN THE CERN SUPER PROTON SYNCHROTRON G. Arduini,
CERN F. Ruggiero Univ. “La Sapienza”, Rome, 20–24 March 2006 Measurements, ideas, curiosities beam diagnostics and fundamental limitations to the performance.
ECLOUD04, Panel Discussion, April 2004F. Zimmermann Panel Discussion future machines: higher intensity shorter bunch spacings and/or higher charge per.
Electron cloud effects in Cesr-TF and KEKB K. Ohmi KEK 29 Feb 2008 LEPP, Cornell univ.
Ion effects in low emittance rings Giovanni Rumolo Thanks to R. Nagaoka, A. Oeftiger In CLIC Workshop 3-8 February, 2014, CERN.
Electron cloud beam dynamics G. Dugan, Cornell University CesrTA Advisory Committee 9/11/12.
Chaos and Emittance growth due to nonlinear interactions in circular accelerators K. Ohmi (KEK) SAD2006 Sep at KEK.
Main Activities and News from LHC e-Cloud Simulations Frank Zimmermann ICE Meeting 8 June 2011.
Electron cloud study for ILC damping ring at KEKB and CESR K. Ohmi (KEK) ILC damping ring workshop KEK, Dec , 2007.
Electron Cloud Effects: Heat Load and Stability Issues G. Iadarola, A. Axford, K. Li, A. Romano, G. Rumolo Joint HiLumi LHC - LARP Annual Meeting,
Beam dynamics in crab collision K. Ohmi (KEK) IR2005, 3-4, Oct FNAL Thanks to K. Akai, K. Hosoyama, K. Oide, T. Sen, F. Zimmermann.
Review on two stream instabilities in accelerators Giovanni Rumolo In TWIICE, Topical Workshop on Instabilities, Impedances and Collective Effects
Benchmarking Headtail with e-cloud observations with LHC 25ns beam H. Bartosik, W. Höfle, G. Iadarola, Y. Papaphilippou, G. Rumolo.
Two-beam instabilities in low emittance rings Lotta Mether, G.Rumolo, G.Iadarola, H.Bartosik Low Emittance Rings Workshop INFN-LNF, Frascati September.
Two beam instabilities in low emittance rings Lotta Mether, G.Rumolo, G.Iadarola, H.Bartosik Low Emittance Rings Workshop INFN-LNF, Frascati September.
Juan F. Esteban Müller P. Baudrenghien, T. Mastoridis, E. Shaposhnikova, D. Valuch IPAC’14 – Acknowledgements: T. Bohl, G. Iadarola, G. Rumolo,
Coupled bunch Instabilities at ILC Damping Rings L. Wang SLAC ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 Cornell University Refer to.
Summary: Instabilities Thanks for many interesting talks K. Ohmi.
OPERATED BY STANFORD UNIVERSITY FOR THE U.S. DEPT. OF ENERGY 1 Alexander Novokhatski April 13, 2016 Beam Heating due to Coherent Synchrotron Radiation.
Interpretation of beam signals for high intensities
Beam Instability in High Energy Hadron Accelerators and its Challenge for SPPC Liu Yu Dong.
Loss of Landau damping for reactive impedance and a double RF system
Theory, observations and mitigation of dancing bunches in the Tevatron
T. Agoh (KEK) Introduction CSR emitted in wiggler
Electron Cloud Effects in SuperB
FAIR high intensity beam dynamics
The HEADTAIL Development Working Group (HDWG)
Study of the Heat Load in the LHC
Follow up on SPS transverse impedance
New results on impedances, wake fields and electromagnetic fields in an axisymmetric beam pipe N. Mounet and E. Métral Acknowledgements: B. Salvant, B.
A. Al-khateeb, O. Chorniy, R. Hasse, V. Kornilov, O. Boine-F
Electron cloud and collective effects in the FCC-ee Interaction Region
J.A.Crittenden, Y.Li, X.Liu, M.A.Palmer, J.P.Sikora (Cornell)
U C L A Electron Cloud Effects on Long-Term Beam Dynamics in a Circular Accelerator By : A. Z. Ghalam, T. Katsouleas(USC) G. Rumolo, F.Zimmermann(CERN)
Study of the Heat Load in the LHC
Study on Beam Instability
Invited talk TOAC001 ( min, 21 slides)
E-cloud instability at CESR TA
Collective effects in CEPC
E. Métral, G. Rumolo, R. Tomás (CERN Switzerland), B
ILC DR workshop at Cornell
A Head-Tail Simulation Code for Electron Cloud
Beam-Beam Interaction in Linac-Ring Colliders
Impedance analysis for collimator and beam screen in LHC and Resistive Wall Instability Liu Yu Dong.
CINVESTAV – Campus Mérida Electron Cloud Effects in the LHC
A Mapping Approach to the Electron Cloud for LHC
Lecture 6 ACCELERATOR PHYSICS HT E. J. N. Wilson
Some Issues on Beam-Beam Interaction & DA at CEPC
Frank Zimmermann, Factories’03
Beam-beam Studies, Tool Development and Tests
Presentation transcript:

extensions of the impedance concept: electron cloud Frank Zimmermann, CERN ICFA/HiLumi/LIU/INFN/EuCARD-XBEAM joint workshop Impedance 2014, Erice, 25 April 2013 Work supported by the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

outline brief history notion of “wake” or “impedance” for coupled bunch electron-cloud effects notion of “wake” or “impedance” for single bunch electron-cloud effects 2-D generalization of impedance for more accurate analysis of electron-cloud phenomena modification of conventional impedances by an electron cloud impedance for incoherent electron cloud effects? microwaves & electron cloud

historical observations of e-cloud effects Argonne ZGS,1965 INP Novosibirsk, 1965 BNL AGS, 1965 Bevatron, 1971 ISR, ~1972 PSR, 1988 historical observations of e-cloud effects AGS Booster, 1998/99 CERN SPS, 2000 KEKB, 2000

electron cloud: schematic of e- build up large spacing short spacing

theory of coupled-bunch electron-cloud instability explanation for “anomalous antidamping” in CESR modelled by macro-particle simulation simulated e- build up model growth rate & tune shifts J.T. Rogers, 1995 [1]

theory of coupled-bunch electron-cloud instability identified at KEK Photon Factory w e+ operation described by wake model M. Izawa, Y. Sato, T. Toyomasa, 1995 [2] e- operation e+ operation

wake model with range of 8 bunches (16 ns) measurement wake model with range of 8 bunches (16 ns) M. Izawa, Y. Sato, T. Toyomasa, 1995 [2]

theory of coupled-bunch electron-cloud instability identified at KEK Photon Factory w. e+ operation wake field computed by macro-particle simulation transient e- distribution K. Ohmi, 1995 [3] simulated wake field instability growth rate

theory of coupled-bunch electron-cloud instability perhaps the first mentioning of “impedance” in connection with electron cloud K. Ohmi, 1995 [3]

theory of coupled-bunch electron-cloud instability explanation of “anomalous anti damping” in CESR macro-particle simulations J.T. Rogers & T. Holmquist, 1997 [5]

J.T. Rogers & T. Holmquist, 1997 [5] probably the first explicit “impedance” in connection with electron cloud J.T. Rogers & T. Holmquist, 1997 [5]

simple wake field model for short bunches

analytical estimates of equilibrium electron density, wake field and coherent tune shift e- density due to space charge and thermal energy S. Heifets, 2002 [11] e- density due to charge neutralization F.Zimmermann, 1997 [4] SB and CB wake of e- cloud K. Ohmi, F.Zimmermann, 2000 [6] G. Rumolo, F.Zimmermann, 2001[9] coherent tune shift due to e- cloud K.Ohmi, S.Heifets, F.Zimmermann, 2001 [8]

resonator model of e-cloud wake K. Ohmi, F. Zimmermann, E. Perevedentsev, 2001 [7] analytical solution for coasting beam, rigid Gaussian cloud of size equal to beam size and linear force with

simulated e-cloud wake for varying cloud size K. Ohmi, F. Zimmermann, E. Perevedentsev, 2001 [7] fitted to

wake strength vs cloud size K. Ohmi, F. Zimmermann, E. Perevedentsev, 2001 [7]

fitted vs analytical wake calculation se=sbeam simulation se= 10-50 sbeam K. Ohmi, F. Zimmermann, E. Perevedentsev, 2001

wake strength vs transverse offset (linearity check) K. Ohmi, F. Zimmermann, E. Perevedentsev, 2001 [7] se=sbeam se=20sbeam

wake strength vs longitudinal position of displaced “slice” KEKB-LER K. Ohmi, F. Zimmermann, E. Perevedentsev, 2001 [7]

wake strength vs longitudinal position of displaced “slice” SPS K. Ohmi, F. Zimmermann, E. Perevedentsev, 2001 [7]

e-cloud resonator impedance K. Ohmi, F. Zimmermann, E. Perevedentsev, 2001 [7]

wake fields from 3-D e-cloud computations (e.g. for wiggler) average e- cloud density in 2D and 3D calculation s-dependent e- cloud density in 3D calculation z=ct-dependent e- cloud wake potential W. Bruns et al, PAC07, 2007

unusual wake behavior simulated by HEADTAIL code G. Rumolo, F. Zimmermann, 2002 [12]

unusual wake behavior wake averaged over a beam slice ≠ wake on axis wake depends on longitudinal position of displaced slice G. Rumolo, F. Zimmermann, 2002 [12]

generalization of transverse impedance must consider wake W1(z,z’), not W1(z-z’) 2-dimensional Fourier transform E. Perevedentsev, 2002 [10] the wake W1(z,z’) can be obtained from simulations

standard TMCI E. Perevedentsev, 2002 [12]

generalized TMCI E. Perevedentsev, 2002 [12]

extracting the 2-dimensional wake G. Rumolo, 2002 [13]

2-dimensional impedance for SPS & SIS G. Rumolo, 2002 [13]

2-dimensional wake matrix for KEKB-LER A. Markovik, 2011 & 2013 [16]

tracking with wake matrix for KEKB-LER measurement simulation A. Markovik et al, 2011 & 2013 [16]

resistive-wall impedance with space charge & electron cloud Proc. CARE-HHH BEAM07 A.M. Al-Khateeb, R. Hasse, O. Boine-Frankenheim, 2007 [15]

resistive-wall impedance with electron cloud dielectric function combined resistive wall, space-charge & e-cloud impedance: A.M. Al-Khateeb, R. Hasse, O. Boine-Frankenheim, 2007 [15]

shielding of resistive wall coupling impedance depleted up to 500 MHz (50x fec) A.M. Al-Khateeb, R. Hasse, O. Boine-Frankenheim, 2007 [15]

impedance for w<wec: shielding of resistive wall A.M. Al-Khateeb, R. Hasse, O. Boine-Frankenheim, 2007 [15]

difference between high- and low-energy machines instabilities at ≤ 2-20 MHz (low energy) ≤ 50-500 < MHz (high energy) A. Al-Khateeb, W. Hasse, O. Boine-Frankenheim, BEAM’07 [15]

impedance for w>wec: evanescent & overdamped surface waves evanescent overdamped evanescent overdamped heating A. Al-Khateeb, W. Hasse, O. Boine-Frankenheim, BEAM’07 [15]

no impedance or wake mentioned  E. Benedetto, G. Franchetti, F. Zimmermann, 2006 incoherent electron-cloud impedance? (in analogy to “space charge impedance”)

microwaves & electron cloud vertical m=1 head-tail mode stabilized by trapped electron cloud in CESR-c (R. Littauer, CNLS 88/847, 1988) due to coupling w. e- cyclotron resonance proposals to inject of microwaves to suppress or enhance (for conditioning purposes) the electron-cloud build up in a storage ring (A. Chao 1997, F. Caspers 2002, M. Mattes, E. Sorolla & F.Z. , ECLOUD’12 & IEEE APWC - EEIS '12 ) evidence for an interplay of beam-induced ``wake fields'' and electron-cloud build up seen at the PEP-II collider (F. Decker et al, Proc. ECLOUD’02) suggested “magnetron effect”: under the influence of a beam- induced electromagnetic wake field and for certain values of the external dipole magnetic field, the cloud electrons oscillate and radiate coherently, at frequencies so high that the inner ``beam screen'' of the LHC is no longer shielding, which could lead to the quench of all superconducting magnets (F. Caspers, May 2005).

thank you! "To have seen Italy without having seen Sicily is not to have seen Italy at all, for Sicily is the clue to everything." Johann Wolfgang von Goethe

[1] J. Rogers, Photoelectron Trapping Mechanism for Horizontal Coupled Bunch Mode Growth in CESR, CBN 95-2 (1995) [2] M. Izawa, Y. Sato, T. Toyomasu, The Vertical instability in a positron bunched beam, Phys.Rev.Lett. 74 (1995) 5044-5047 [3] K. Ohmi, Beam and photoelectron interactions in positron storage rings, Phys.Rev.Lett. 75 (1995) 1526-1529 [4] F. Zimmermann, A Simulation Study of Electron-Cloud Instability and Beam-Induced Multipacting in the LHC, LHC Project Report 95, 1997 [5] T. Holmquist , J.T. Rogers, The trapped photoelectron instability in electron and positron storage rings, CBN 97-25 (1997), Phys. Rev. Lett (1997). [6] K. Ohmi, F. Zimmermann, Head - tail instability caused by electron cloud in positron storage rings , Phys.Rev.Lett. 85 (2000) 3821-3824 [7] K. Ohmi, F. Zimmermann, E. Perevedentsev, Wake-field and fast head-tail instability caused by an electron cloud, PRE 65, 016502 (2001) [8] K. Ohmi, S. Heifets, F. Zimmermann, Study of coherent tune shift caused by electron cloud in positron storage rings , APAC’01 Beijing (2001) [9] F. Zimmermann, G. Rumolo, Two-Stream Problems in Accelerators , APAC’01 Beijing (2001) [10] E. Perevedentsev, Head-Tail Instability Caused by Electron Cloud, Proc. ECLOUD02, CERN-2002-001 [11] S. Heifets, Electron cloud at high beam currents, Proc ECLOUD02, CERN-2002-001 [12] G. Rumolo, F. Zimmermann, Electron cloud simulations: beam instabilities and wakefields, PRST-AB 5, 121002 (2002) [13] G. Rumolo, Mini-workshop on SPS Scrubbing Results and Implications for the LHC (2002) [14] F. Zimmermann, Review of Single Bunch Instabilities Driven by an Electron Cloud, PRST-AB 7, 124801 (2004) [15] A.M. Al-Khateeb, R.W. Hasse, O. Boine-Frankenheim, Influence of Uniform Electron Clouds in the Coupling Impedance, Proc. BEAM’07, CERN Report 2008-005, CARE-Conf-08-004-HHH, pp.100-105 [16] A. Markovik, Simulation of the Interaction of Positively Charged Beams and Electron Clouds, Ph D. U. Rostock, 2013; also A. Markovik, G. Poeplau, U. van Rienen, IPAC2011 references