Section 5.3 – The Graph of a Rational Function

Slides:



Advertisements
Similar presentations
9.3 Rational Functions and Their Graphs
Advertisements

3.4 Rational Functions I. A rational function is a function of the form Where p and q are polynomial functions and q is not the zero polynomial. The domain.
Section 5.3 – The Graph of a Rational Function
Rational Expressions, Vertical Asymptotes, and Holes.
Rational Functions I; Rational Functions II – Analyzing Graphs
Rational Expressions GRAPHING.
Math 139 – The Graph of a Rational Function 3 examples General Steps to Graph a Rational Function 1) Factor the numerator and the denominator 2) State.
3.4 Rational Functions and Their Graphs
Section 5.2 – Properties of Rational Functions
Objectives: Find the domain of a Rational Function Determine the Vertical Asymptotes of a Rational Function Determine the Horizontal or Oblique Asymptotes.
Section 7.2.  A rational function, f is a quotient of polynomials. That is, where P(x) and Q(x) are polynomials and Q(x) ≠ 0.
EXAMPLE 1 Graph a rational function (m < n) Graph y =. State the domain and range. 6 x SOLUTION The degree of the numerator, 0, is less than the.
Section4.2 Rational Functions and Their Graphs. Rational Functions.
5.3 Graphs of Rational Functions
Sullivan PreCalculus Section 3
Section 4.1 Polynomial Functions. A polynomial function is a function of the form a n, a n-1,…, a 1, a 0 are real numbers n is a nonnegative integer D:
Section 5.2 Properties of Rational Functions
Rational Functions Intro - Chapter 4.4.  Let x = ___ to find y – intercepts A rational function is the _______ of two polynomials RATIO Graphs of Rational.
Sullivan Algebra and Trigonometry: Section 4.4 Rational Functions II: Analyzing Graphs Objectives Analyze the Graph of a Rational Function.
Graphing Rational Functions Objective: To graph rational functions without a calculator.
 Review:  Graph: #3 on Graphing Calc to see how it looks. › HA, VA, Zeros, Y-int.
2.5 RATIONAL FUNCTIONS DAY 2 Learning Goals – Graphing a rational function with common factors.
I can graph a rational function.
9.3 Graphing Rational Functions What is rational function? What is an asymptote? Which ones can possibly be crossed? A function that is written in fractional.
Graphing Rational Expressions. Find the domain: Graph it:
Calculus Section 2.5 Find infinite limits of functions Given the function f(x) = Find =  Note: The line x = 0 is a vertical asymptote.
Rational Functions A rational function has the form
Rational Functions and Models
Section 2.6 Rational Functions Part 2
Rational Functions.
4.4 Rational Functions II: Analyzing Graphs
Unit 4: Graphing Rational Equations
Rational functions are quotients of polynomial functions.
Lesson 2.7 Graphs of Rational Functions
4.4 Rational Functions II: Analyzing Graphs
Section 3.5 Rational Functions and Their Graphs
Section 5.4 Limits, Continuity, and Rational Functions
OTHER RATIONAL FUNCTIONS
26 – Limits and Continuity II – Day 2 No Calculator
3.5 Rational Functions II: Analyzing Graphs
Warm-Up  .
Warm UP! Factor the following:.
Asymptotes Rise Their Lovely Heads
“Onions have layers.”.
Section 5.2 – Properties of Rational Functions
MATH 1310 Section 4.4.
Rational Functions II: Analyzing Graphs
Notes Over 9.3 Graphing a Rational Function (m < n)
Factor completely and simplify. State the domain.
3.5 Rational Functions II: Analyzing Graphs
Graphing Rational Functions
Simplifying rational expressions
Rational Functions.
2.6 Section 2.6.
3.4 Rational Functions I.
“Onions have layers.”.
2.6 Rational Functions and Their Graphs
Graphing Rational Expressions
3.5 Rational Functions II: Analyzing Graphs
The Graph of a Rational Function
Students, Take out your calendar and your homework
Solving and Graphing Rational Functions
December 15 No starter today.
The Graph of a Rational Function
4.3 Rational Functions I.
MATH 1310 Section 4.4.
Section 5.4 Limits, Continuity, and Rational Functions
Properties of Rational Functions The Graph of a Rational Function
Presentation transcript:

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 1) Factor the numerator and the denominator 2) State the domain and the location of any holes in the graph 3) Simplify the function to lowest terms 4) Find the y-intercept (x = 0) and the x-intercept(s) (y = 0) 5) Identify any existing asymptotes (vertical, horizontal, or oblique

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 6) Identify any points intersecting a horizontal or oblique asymptote. 7) Use test points between the zeros and vertical asymptotes to locate the graph above or below the x-axis 8) Analyze the behavior of the graph on each side of an asymptote 9) Sketch the graph

Section 5.3 – The Graph of a Rational Function Example 𝑓 𝑥 = 𝑥 2 +𝑥−12 𝑥 2 −4 1) Factor the numerator and the denominator 𝑓 𝑥 = (𝑥+4)(𝑥−3) (𝑥+2)(𝑥−2) 2) State the domain and the location of any holes in the graph Domain: 𝑥 𝑥≠-2, 2} No holes 3) Simplify the function to lowest terms 𝑓 𝑥 = (𝑥+4)(𝑥−3) (𝑥+2)(𝑥−2)

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 4) Find the y-intercept (x = 0) and the x-intercept(s) (y = 0) y-intercept (x = 0) x-intercept(s) (y = 0) Use numerator factors 𝑓 0 = (0+4)(0−3) (0+2)(0−2) 𝑥+4=0 𝑥−3=0 𝑓 0 = −12 −4 =3 𝑥=−4 𝑥=3 (−4, 0) (3, 0) (0, 3)

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 5) Identify any existing asymptotes (vertical, horizontal, or oblique 𝑓 𝑥 = 𝑥 2 +𝑥−12 𝑥 2 −4 𝑓 𝑥 = (𝑥+4)(𝑥−3) (𝑥+2)(𝑥−2) Horiz. Or Oblique Asymptotes Vertical Asymptotes Examine the largest exponents Use denominator factors Same ∴ Horiz. - use coefficients 𝑥+2=0 𝑥−2=0 𝑦= 1 1 𝑥=−2 𝑥=2 𝑉𝐴:𝑥=−2 𝑎𝑛𝑑 𝑥=2 𝐻𝐴: 𝑦=1

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 6) Identify any points intersecting a horizontal or oblique asymptote. 𝑦=1 𝑎𝑛𝑑 𝑓 𝑥 = 𝑥 2 +𝑥−12 𝑥 2 −4 1= 𝑥 2 +𝑥−12 𝑥 2 −4 𝑥 2 −4= 𝑥 2 +𝑥−12 −4=𝑥−12 8=𝑥 (8,1)

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 7) Use test points between the zeros and vertical asymptotes to locate the graph above or below the x-axis -4 -2 2 3 𝑎𝑏𝑜𝑣𝑒 𝑏𝑒𝑙𝑜𝑤 𝑎𝑏𝑜𝑣𝑒 𝑓 𝑥 = (𝑥+4)(𝑥−3) (𝑥+2)(𝑥−2) 𝑓 −3 = (+)(−) (−)(−) =− 𝑓 −5 = (−5+4)(−5−3) (−5+2)(−5−2) 𝑓 −3 =𝑏𝑒𝑙𝑜𝑤 𝑓 −5 = (−)(−) (−)(−) =+ 𝑓 0 = (+)(−) (+)(−) =+ 𝑓 −5 =𝑎𝑏𝑜𝑣𝑒 𝑓 0 =𝑎𝑏𝑜𝑣𝑒

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 7) Use test points between the zeros and vertical asymptotes to locate the graph above or below the x-axis -4 -2 2 3 𝑎𝑏𝑜𝑣𝑒 𝑏𝑒𝑙𝑜𝑤 𝑎𝑏𝑜𝑣𝑒 𝑏𝑒𝑙𝑜𝑤 𝑎𝑏𝑜𝑣𝑒 𝑓 𝑥 = (𝑥+4)(𝑥−3) (𝑥+2)(𝑥−2) 𝑓 2.5 = (+)(−) (+)(+) =− 𝑓 4 = (+)(+) (+)(+) =+ 𝑓 2.5 =𝑏𝑒𝑙𝑜𝑤 𝑓 4 =𝑎𝑏𝑜𝑣𝑒

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 8) Analyze the behavior of the graph on each side of an asymptote 𝑎𝑏𝑜𝑣𝑒 -4 -2 2 3 𝑏𝑒𝑙𝑜𝑤 𝑓 𝑥 = (𝑥+4)(𝑥−3) (𝑥+2)(𝑥−2) 𝑓(𝑥)→ (+)(−) ( 0 − )(−) 𝑥→ −2 − 𝑓(𝑥)→−∞ 𝑓(𝑥)→ (+)(−) ( 0 + )(−) 𝑥→ −2 + 𝑓(𝑥)→∞

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 8) Analyze the behavior of the graph on each side of an asymptote 𝑎𝑏𝑜𝑣𝑒 -4 -2 2 3 𝑏𝑒𝑙𝑜𝑤 𝑓 𝑥 = (𝑥+4)(𝑥−3) (𝑥+2)(𝑥−2) 𝑓(𝑥)→ (+)(−) (+)( 0 − ) 𝑥→ 2 − 𝑓(𝑥)→∞ 𝑓(𝑥)→ (+)(−) (+)( 0 + ) 𝑥→ 2 + 𝑓 𝑥 →−∞

Section 5.3 – The Graph of a Rational Function 9) Sketch the graph

Section 5.3 – The Graph of a Rational Function Example 𝑓 𝑥 = 𝑥 2 +3𝑥−10 𝑥 2 +8𝑥+15 1) Factor the numerator and the denominator 𝑓 𝑥 = (𝑥+5)(𝑥−2) (𝑥+5)(𝑥+3) 2) State the domain and the location of any holes in the graph Domain: (−∞,−5)∪(−5, −3)∪(−3, ∞) Hole in the graph at 𝑥=−5 3) Simplify the function to lowest terms 𝑓 𝑥 = (𝑥−2) (𝑥+3)

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 4) Find the y-intercept (x = 0) and the x-intercept(s) (y = 0) y-intercept (x = 0) x-intercept(s) (y = 0) Use numerator factors 𝑓 0 = (0−2) (0+3) 𝑥−2=0 𝑓 0 =− 2 3 𝑥=2 (2, 0) (0,− 2 3 )

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 5) Identify any existing asymptotes (vertical, horizontal, or oblique 𝑓 𝑥 = 𝑥 2 +3𝑥−10 𝑥 2 +8𝑥+15 𝑓 𝑥 = (𝑥−2) (𝑥+3) Horiz. Or Oblique Asymptotes Vertical Asymptotes Examine the largest exponents Use denominator factors Same ∴ Horiz. - use coefficients 𝑥+3=0 𝑦= 1 1 𝑥=−3 𝑉𝐴:𝑥=−3 𝐻𝐴: 𝑦=1

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 6) Identify any points intersecting a horizontal or oblique asymptote. 𝑦=1 𝑎𝑛𝑑 𝑓 𝑥 = 𝑥−2 𝑥+3 1= 𝑥−2 𝑥+3 𝑥+3=𝑥−2 3=−2 𝑙𝑜𝑠𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 7) Use test points between the zeros and vertical asymptotes to locate the graph above or below the x-axis -3 2 𝑎𝑏𝑜𝑣𝑒 𝑏𝑒𝑙𝑜𝑤 𝑎𝑏𝑜𝑣𝑒 𝑓 𝑥 = (𝑥−2) (𝑥+3) 𝑓 0 = (−) (+) =− 𝑓 −4 = (−4−2) (−4+3) 𝑓 0 =𝑏𝑒𝑙𝑜𝑤 𝑓 −4 = (−) (−) =+ 𝑓 3 = (+) (+) =+ 𝑓 −4 =𝑎𝑏𝑜𝑣𝑒 𝑓 3 =𝑎𝑏𝑜𝑣𝑒

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 8) Analyze the behavior of the graph on each side of an asymptote -3 2 𝑓 𝑥 = (𝑥−2) (𝑥+3) 𝑓(𝑥)→ (−) ( 0 − ) 𝑥→ −3 − 𝑓(𝑥)→∞ 𝑓(𝑥)→ (−) ( 0 + ) 𝑥→ −3 + 𝑓 𝑥 →−∞

Section 5.3 – The Graph of a Rational Function 9) Sketch the graph

Section 5.3 – The Graph of a Rational Function Example 𝑓 𝑥 = 𝑥 2 +3𝑥+2 𝑥−1 1) Factor the numerator and the denominator 𝑓 𝑥 = (𝑥+2)(𝑥+1) 𝑥−1 2) State the domain and the location of any holes in the graph Domain: (−∞,1)∪(1, ∞) No holes 3) Simplify the function to lowest terms 𝑓 𝑥 = (𝑥+2)(𝑥+1) (𝑥−1)

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 4) Find the y-intercept (x = 0) and the x-intercept(s) (y = 0) y-intercept (x = 0) x-intercept(s) (y = 0) Use numerator factors 𝑓 0 = (0+2)(0+1) (0−1) 𝑥+2=0 𝑥+1=0 𝑓 0 = 2 −1 =−2 𝑥=−2 𝑥=−1 (−2, 0) (−1, 0) (0,−2)

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 5) Identify any existing asymptotes (vertical, horizontal, or oblique 𝑓 𝑥 = 𝑥 2 +3𝑥+2 𝑥−1 𝑓 𝑥 = (𝑥+2)(𝑥+1) (𝑥−1) Horiz. or Oblique Asymptotes Vertical Asymptotes Examine the largest exponents Use denominator factors Oblique: Use long division 𝑥−1=0 𝑥 +4 𝑥=1 𝑥−1 − + 𝑥 2 − 𝑥 𝑉𝐴:𝑥=1 4𝑥 +2 − + 4𝑥−4 O𝐴: 𝑦=𝑥+4

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 6) Identify any points intersecting a horizontal or oblique asymptote. 𝑦=𝑥+4 𝑎𝑛𝑑 𝑓 𝑥 = (𝑥+2)(𝑥+1) 𝑥−1 𝑥+4= (𝑥+2)(𝑥+1) 𝑥−1 (𝑥+4)(𝑥−1)=(𝑥+2)(𝑥+1) 𝑥 2 +3𝑥−4= 𝑥 2 +3𝑥+2 𝑙𝑜𝑠𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 7) Use test points between the zeros and vertical asymptotes to locate the graph above or below the x-axis -2 -1 1 𝑏𝑒𝑙𝑜𝑤 𝑎𝑏𝑜𝑣𝑒 𝑏𝑒𝑙𝑜𝑤 𝑎𝑏𝑜𝑣𝑒 𝑓 𝑥 = (𝑥+2)(𝑥+1) (𝑥−1) 𝑓 −1.5 = (+)(−) (−) =+ 𝑓 −4 = (−)(−) (−) =− 𝑓 3 = (+)(+) (+) =+ 𝑓 −1.5 =𝑎𝑏𝑜𝑣𝑒 𝑓 0 = (+)(+) (−) =− 𝑓 −4 =𝑏𝑒𝑙𝑜𝑤 𝑓 3 =𝑎𝑏𝑜𝑣𝑒 𝑓 0 =𝑏𝑒𝑙𝑜𝑤

Section 5.3 – The Graph of a Rational Function General Steps to Graph a Rational Function 8) Analyze the behavior of the graph on each side of an asymptote 1 𝑓 𝑥 = (𝑥+2)(𝑥+1) (𝑥−1) 𝑓(𝑥)→ (+)(+) ( 0 − ) 𝑥→ 1 − 𝑓 𝑥 →−∞ 𝑓(𝑥)→ (+)(+) ( 0 + ) 𝑥→ 1 + 𝑓 𝑥 →∞

Section 5.3 – The Graph of a Rational Function 9) Sketch the graph