इंट्रस्टिंग बनने के लिए आपको इंट्रस्टेड होना पड़ेगा। If you want to become interesting then you need to be interested.
Binary Numbers
A Bit About Bits A bit (binary digit) is the smallest unit of information can have two values - 1 and 0. Binary digits, or bits, can represent numbers, codes, or instructions. On Off
Bits as Numbers Binary number system - a system that denotes all numbers and combinations of two digits. The binary system uses two digits to represent the numbers 0 and 1.
Bits, Bytes, and Buzzwords Common terms might describe file size or memory size: Bit: smallest unit of information Byte: a grouping of eight bits of information K: (kilobyte); about 1,024 bytes of information - technically 1024 bytes equals 1K of storage.
Bits, Bytes, and Buzzwords MB: (megabyte); about 1 million bytes of information GB: (gigabyte); about 1 billion bytes of information TB: (terabyte); about 1 million megabytes of information
Decimal System Humans have 10 fingers: count in DECIMAL Numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ... Use 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 We know that 5304 = 5*103+3*102+0*101+4*100 Base 10
Binary System BINARY numbers: Written with only 2 digits: "0" and "1" 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, .... Written with only 2 digits: "0" and "1" In the same way as for decimal, 1011 (binary) = 1*23+0*22+1*21+1*20= 11 (decimal) Base 2 Converting from binary to decimal is simple, just as for 1011 above.
Binary System (contd.) How to know if 1011 is in binary or in decimal? Subscripts are used to show the base: 10112 (binary number), 101110 (decimal number) Converting from decimal to binary a little bit more tricky, Let us discuss some examples.
Conversion of decimal to binary Convert 41 into a binary number Integer Quotient Remainder Coefficient 41/2=20 1/2 a0 =1 20/2=10 a1 =0 10/2=5 a2 =0 5/2=2 1/2 a3 =1 2/2=1 a4 =0 1/2 a5 =1 So (41)10 = (a5a4a3a2a1a0) = (101001)2
Conversion of decimal to binary Convert (0.6875)10 to binary Fraction Integer + fraction Coefficient 0.6875x2 1+0.3750 a-1 = 1 0.375x2 0+0.750 a-2 = 0 0.750x2 1+0.500 a-3 = 1 0.500x2 1+0.000 a-4 = 1 Hence(0.6875)10=(0.a-1a-2a-3a-4)2=(0.1011)2
Binary to decimal conversion A binary number can be converted to a decimal by forming the sum of powers of 2 of those coefficients whose value is 1. 3 2 1 -1 -2 -3 (1010.011)2= 23+21+2-2+2-3 =(10.375)10
Example Decimal Binary Octal Hex (base 10) (base 2) (base 8) (base 16) 0 0000 0 0 1 0001 1 1 2 0010 2 2 3 0011 3 3 4 0100 4 4 5 0101 5 5 6 0110 6 6 7 0111 7 7 8 1000 10 8 9 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F 35 10 0011 43 23 100 110 0100 144 64 255 1111 1111 377 FF