Acid-Base Balance.

Slides:



Advertisements
Similar presentations
Water, Electrolytes, and
Advertisements

 2009 Cengage-Wadsworth Chapter 14 Body Fluid & Electrolyte Balance.
Acids and Bases – their definitions and meanings Molecules containing hydrogen atoms that can release hydrogen ions in solutions are referred to as acids.
Acid-Base Balance Nestor T. Hilvano, M.D., M.P.H..
1 Acid and Base Balance and Imbalance. 2 pH Review pH = - log [H + ] H + is really a proton Range is from If [H + ] is high, the solution is acidic;
1 Acid and Base Balance and Imbalance Dr. WASIF ALI KHAN MD-PATHOLOGY (UNIVERSITY OF BOMBAY) Assistant Prof. in Pathology Al Maarefa College.
1.  pH = - log [H + ]  H + is really a proton  Range is from  If [H + ] is high, the solution is acidic; pH < 7  If [H + ] is low, the solution.
Physiology Blood Buffer System Behrouz Mahmoudi.
A CID -B ASES /G ASES IN BLOOD Under the supervision of : Dr. Malek Al – Qub.
Unit Five: The Body Fluids and Kidneys
HUMAN RENAL SYSTEM PHYSIOLOGY Lecture 11,12
Unit III: Homeostasis Acid-Base Balance Chapter 24: pp
Prof. M. Tatár Dept. of Pathophysiology JLF UK
ACID BASE BALANCE Lecture – 8 Dr. Zahoor 1. ACID BASE BALANCE 2  Acid Base Balance refers to regulation of free (unbound) H + concentration in the body.
Renal Acid-Base Balance. Acid An acid is when hydrogen ions accumulate in a solution. It becomes more acidic [H+] increases = more acidity CO 2 is an.
Acid, Base, Electrolytes Regulation for BALANCE. Fluid Compartments.
Acid-Base Balance for Allied Health Majors Using the Henderson-Hasselbach Equation H 2 O + CO 2 H 2 CO 3 H + + HCO 3 - pH = pK + log HCO 3 - pCO 2 ( α.
1 Acid and Base Balance and Imbalance. 2 pH Review pH = - log [H + ] H + is really a proton Range is from If [H + ] is high, the solution is acidic;
Dr. Saidunnisa Professor Of Biochemistry Acid-Base regulation.
1 Acid –Base Imbalance Dr. Eman EL Eter. Acid-Base Imbalances 2 pH< 7.35 acidosis pH > 7.45 alkalosis PCO2= mmHg HCO3- = mEq/L The body response.
MedChem 61 Buffer Systems of the Body Dr. M. Sasvári: Medical Chemistry Lectures 6.
1 Acid-Base Balance  Normal pH of body fluids  Arterial blood is 7.4  Venous blood and interstitial fluid is 7.35  Intracellular fluid is 7.0  Alkalosis.
Acid-Base Balance.  Blood - normal pH of 7.2 – 7.45  7.45 = alkalosis  3 buffer systems to maintain normal blood pH 1. Buffers 2. Removal of CO 2 by.
© 2012 Pearson Education, Inc. Figure 27-1a The Composition of the Human Body SOLID COMPONENTS (31.5 kg; 69.3 lbs) ProteinsLipidsMineralsCarbohydratesMiscellaneous.
Physiology of Acid-base balance-I Dr. Eman El Eter.
1 Acid and Base Balance and Imbalance. pH Review pH = - log [H + ] pH = - log [H + ] H + is really a proton H + is really a proton Range is from
Figure 27-1a The Composition of the Human Body.
Acid-Base Balance. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Objectives Explain how the pH of the blood.
Fluids and Acid Base Physiology Dr. Meg-angela Christi Amores.
(Renal Physiology 10) Acid-Base Balance 2 Buffers System Ahmad Ahmeda Cell phone:
D. C. Mikulecky.  CHEMICAL COMPOUNDS CAN BE PROTON DONORS OR ACCEPTORS  PROTON DONORS ARE ACIDS  PROTON ACCEPTORS ARE BASES  ACIDS AND BASES REACT.
Regulation of Acid-Base Balance Review
Acid Base Balance Dr. Eman El Eter.
Dr. Nasim AP biochem 1.  pH = - log [H + ]  H + is really a proton  Range is from 0 – 14  If [H + ] is high, the solution is acidic; pH < 7  If [H.
Dr.Mohammed Sharique Ahmed Quadri Assistant professor physiology Al Amaarefa College ACID BASE BALANCE.
1 Acid and Base Balance and Imbalance. 2 pH Review pH = - log [H + ] H + is really a proton Range is from If [H + ] is high, the solution is acidic;
March 16Acid-base balance1 Kidneys and acid-base balance.
Physiology of Acid-base balance-2 Dr. Eman El Eter.
Dr. Rida Shabbir DPT –IPMR (KMU). Acid Base Balance Acid: is any chemical that releases H ion in solution. Strong acid: Ionizes freely, gives up most.
Acid-base Regulation in human body
I. pH of Body Fluids water ionizes to form protons (H + ) and proton acceptors (OH - ) A. Remember that to an extent water ionizes to form protons (H.
Dr Khin Mar Aye HOD Biochemistry Unit FOM. Objective Describe the role of kidney in Acid-Base Balance To discuss the tubular transport of H + and HCO.
Acid-Base Balance Prof. Omer Abdel Aziz. Objectives Definition Regulation Disturbances.
Fluid, Electrolyte, and Acid Base Homeostasis
Acid-Base Balance Normal pH of body fluids
Renal Control of Acid-Base Balance The kidneys control acid-base balance by excreting either acidic or basic urine Excreting acidic urine reduces the amount.
ACID-BASE BALANCE Acid-base balance means regulation of [H+] in the body fluid. Only slightly changes in [H+] from the normal value can cause marked alteration.
Respiratory regulation of Acid-Base Balance DR. SUMREENA MANSOOR ASSISTANT PROF OF BIOCHEMISTRY DEPT OF BIOCHEMISTRY & MOLECULAR BIOLOGY.
© 2018 Pearson Education, Inc..
Department of Biochemistry
Acid-Base Balance – 2nd Lab
ACID – BASE DISORDERS M. Tatár.
ACID-BASE BALANCE pH is a measure of H + pH = - log [H +] Importance:
INTERVENTIONS FOR CLIENTS WITH ACID- BASE IMBALANCE
Lecture No. 9 Role of the kidney in Acid Base Balance.
Blood Gases, pH and Buffer system
Homeostasis The Interstitial Fluid is the environment of the cells, and life depends on the constancy of this internal sea. Homeostatic Mechanisms : Maintain.
Acid and Base Balance and Imbalance
(Renal Physiology 10) Acid-Base Balance 2
Chapter 19 Acid-Base Balance
Acid-Base Balance – 2nd Lab
Acid Base Balance Renal Regulations
Acid-Base Balance.
Acid-Base Balance pH affects all functional proteins and biochemical reactions Normal pH of body fluids Arterial blood: pH 7.4 Venous blood and IF fluid:
RENAL CONTROL OF ACID-BASE BALANCE
Blood Gases, pH and Buffer system
Department of Biochemistry
Renal Handling of H+ concentration
Acid base balance Dr. S. Parthasarathy MD., DA., DNB, MD (Acu), Dip. Diabetes Diploma in Software based statistics PhD ( physiology), IDRA , FICA.
INTRODUCTION TO ACID BASE BALANCE
Presentation transcript:

Acid-Base Balance

Acid-Base Acids are H+ donors. Bases are H+ acceptors, or give up OH- in solution. Acids and bases can be: Strong – dissociate completely in solution HCl, NaOH Weak – dissociate only partially in solution Lactic acid, carbonic acid

pH

Buffer Systems Provide or remove H+ and stabilize the pH. Include weak acids that can donate H+ and weak bases that can absorb H+. Change in pH, after addition of acid, is less than it would be in the absence of buffer.

Chemical Buffers Act within fraction of a second HCO3-. Protein. Phosphate.

HCO3- pk= 6.1. Present in large quantities. Open system. Respiratory and renal systems act on this buffer system. Most important ECF buffer.

Bicarbonate buffer

Bicarbonate buffer

Quantitative Dynamics of the Bicarbonate Buffer System

Bicarbonate buffer Sodium Bicarbonate (NaHCO3) and carbonic acid (H2CO3) Maintain a 20:1 ratio : HCO3- : H2CO3 HCl + NaHCO3 ↔ H2CO3 + NaCl NaOH + H2CO3 ↔ NaHCO3 + H2O

Henderson-Hassalbalch Equation pH = pK + log [base] [acid]

APPLICATIONS OF HH EQUATION Use to calculate how pH of a physiologic solution responds to changes in the concentration of a week acid and/or it’s corresponding salt form.

Proteins COOH or NH2. Largest pool of buffers in the body. pk close to plasma. Albumin, globulins such as Hb.

Protein Buffers Includes hemoglobin, work in blood Carboxyl group gives up H+ Amino Group accepts H+ Side chains that can buffer H+ are present on 27 amino acids.

Phosphates pk. = 6.8. Low [ ] in ECF, better buffer in ICF, kidneys, and bone.

Phosphate buffer Major intracellular buffer H+ + HPO42- ↔ H2PO4- OH- + H2PO4- ↔ H2O + HPO42-

Urinary Buffers Nephron cannot produce a urine pH < 4.5. IN order to excrete more H+, the acid must be buffered. H+ secreted into the urine tubule and combines with HPO4-2 or NH3. HPO4-2 + H+ H2PO4-2 NH3 + H+ NH4+

Renal Acid-Base Regulation Kidneys help regulate blood pH by excreting H+ and reabsorbing HC03-. Most of the H+ secretion occurs across the walls of the PCT in exchange for Na+. Antiport mechanism. Moves Na+ and H+ in opposite directions. Normal urine normally is slightly acidic because the kidneys reabsorb almost all HC03- and excrete H+. Returns blood pH back to normal range.

Reabsorption of HCO3- Apical membranes of tubule cells are impermeable to HCO3-. Reabsorption is indirect. When urine is acidic, HCO3- combines with H+ to form H2C03-, which is catalyzed by CA located in the apical cell membrane of PCT. As [C02] increases in the filtrate, C02 diffuses into tubule cell and forms H2C03. H2C03 dissociates to HCO3- and H+. HCO3- generated within tubule cell diffuses into peritubular capillary.

Urinary Buffers Nephron cannot produce a urine pH < 4.5. In order to excrete more H+, the acid must be buffered. H+ secreted into the urine tubule and combines with HPO4-2 or NH3. HPO4-2 + H+ H2PO4- NH3 + H+ NH4+

Metabolic Acidosis Gain of fixed acid or loss of HCO3-. Plasma HCO3- decreases. pH decreases.

Metabolic Alkalosis Loss of fixed acid or gain of HCO3-. Plasma HCO3- increases. pH increases.

Metabolic Acidosis Bicarbonate deficit - Blood concentrations of Bicarbonate drop below 22mEq/L Causes: Loss of bicarbonate through diarrhea or renal dysfunction Accumulation of acids (lactic acid or ketones) Failure of kidneys to excrete H+

Compensation for Metabolic Acidosis Increased ventilation Renal excretion of hydrogen ions if possible K+ exchanges with excess H+ in ECF ( H+ into cells, K+ out of cells)

Metabolic Alkalosis Bicarbonate excess - concentration in blood is greater than 26 mEq/L Causes: Excess vomiting = loss of stomach acid Excessive use of alkaline drugs Certain diuretics Endocrine disorders Heavy ingestion of antacids Severe dehydration

Compensation for Metabolic Alkalosis Alkalosis most commonly occurs with renal dysfunction, so can’t count on kidneys Respiratory compensation difficult – hypoventilation limited by hypoxia

Diagnosis of Acid-Base Imbalances Note whether the pH is low (acidosis) or high (alkalosis) Decide which value, pCO2 or HCO3- , is outside the normal range and could be the cause of the problem. If the cause is a change in pCO2, the problem is respiratory. If the cause is HCO3- the problem is metabolic.

3. Look at the value that doesn’t correspond to the observed pH change 3. Look at the value that doesn’t correspond to the observed pH change. If it is inside the normal range, there is no compensation occurring. If it is outside the normal range, the body is partially compensating for the problem.

Anion Gap The difference between [Na+] and the sum of [HC03-] and [Cl-]. [Na+] – ([HC03-] - [Cl-]) = 144 - 24 - 108 = 12mEq/L Normal = 8-16mE/l Clinicians use the anion gap to identify the cause of metabolic acidosis.

Anion Gap Law of electroneutrality: Blood plasma contains an = number of + and – charges. The major cation is Na+. Minor cations are K+, Ca2+ , Mg2+. The major anions are HC03- and Cl- (Routinely measured.) Minor anions include albumin, phosphate, sulfate (called unmeasured anions). Organic acid anions include lactate and acetoacetate,.

Anion Gap In metabolic acidosis, the strong acid releases protons that are buffered primarily by [HC03]. This causes plasma [HC03-] to decrease, shrinking the [HC03-] on the ionogram. Anions that remain from the strong acid, are added to the plasma. If lactic acid is added, the [lactate] rises. Increasing the total [unmeasured anions]. If HCL is added, the [Cl-] rises. Decreasing the [HC03-].

Anion Gap in Metabolic Acidosis Salicylates raise the gap to 20. Renal failure raises gap to 25. Diabetic ketoacidosis raises the gap to 35-40. Lactic acidosis raises the gap to > 35. Largest gaps are caused by ketoacidosis and lactic acidosis.

THANKS