Cycles and Exponential Smoothing Models

Slides:



Advertisements
Similar presentations
Part II – TIME SERIES ANALYSIS C3 Exponential Smoothing Methods © Angel A. Juan & Carles Serrat - UPC 2007/2008.
Advertisements

ECON 251 Research Methods 11. Time Series Analysis and Forecasting.
Exponential Smoothing 1 Ardavan Asef-Vaziri 6/4/2009 Forecasting-2 Chapter 7 Demand Forecasting in a Supply Chain Forecasting -2 Exponential Smoothing.
1 Chapter 7 My interest is in the future because I am going to spend the rest of my life there.— Charles F. Kettering Forecasting.
Chapter 11: Forecasting Models
Time Series Analysis Materials for this lecture Lecture 5 Lags.XLS Lecture 5 Stationarity.XLS Read Chapter 15 pages Read Chapter 16 Section 15.
Seasonal Models Materials for this lecture Lecture 3 Seasonal Analysis.XLS Read Chapter 15 pages 8-18 Read Chapter 16 Section 14.
Time Series Analysis Autocorrelation Naive & Simple Averaging
Chapter 12 - Forecasting Forecasting is important in the business decision-making process in which a current choice or decision has future implications:
Time Series Model Estimation Materials for this lecture Read Chapter 15 pages 30 to 37 Lecture 7 Time Series.XLS Lecture 7 Vector Autoregression.XLS.
Chapter 5 Time Series Analysis
Data Sources The most sophisticated forecasting model will fail if it is applied to unreliable data Data should be reliable and accurate Data should be.
1 Spreadsheet Modeling & Decision Analysis: A Practical Introduction to Management Science, 3e by Cliff Ragsdale.
Session 10a. Decision Models -- Prof. Juran2 Overview Forecasting Methods Exponential Smoothing –Simple –Trend (Holt’s Method) –Seasonality (Winters’
Cycles and Exponential Smoothing Models Materials for this lecture Lecture 4 Cycles.XLS Lecture 4 Exponential Smoothing.XLS Read Chapter 15 pages
Seasonal Models Materials for this lecture Lecture 3 Seasonal Analysis.XLS Read Chapter 15 pages 8-18 Read Chapter 16 Section 14.
Part II – TIME SERIES ANALYSIS C2 Simple Time Series Methods & Moving Averages © Angel A. Juan & Carles Serrat - UPC 2007/2008.
Chapter 11 Solved Problems 1. Exhibit 11.2 Example Linear and Nonlinear Trend Patterns 2.
Statistical Forecasting Models
AGEC 622 Mission is prepare you for a job in business Have you ever made a price forecast? How much confidence did you place on your forecast? Was it correct?
Slides 13b: Time-Series Models; Measuring Forecast Error
1 BABS 502 Moving Averages, Decomposition and Exponential Smoothing Revised March 11, 2011.
1 Demand Planning: Part 2 Collaboration requires shared information.
The Importance of Forecasting in POM
Seasonal Models Materials for this lecture Lecture 9 Seasonal Analysis.XLSX Read Chapter 15 pages 8-18 Read Chapter 16 Section 14 NOTE: The completed Excel.
Chapter 16: Time-Series Analysis
1 Spreadsheet Modeling & Decision Analysis: A Practical Introduction to Management Science, 3e by Cliff Ragsdale.
Operations Management
3-1Forecasting William J. Stevenson Operations Management 8 th edition.
3-1Forecasting. 3-2Forecasting FORECAST:  A statement about the future value of a variable of interest such as demand.  Forecasts affect decisions and.
Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
DSc 3120 Generalized Modeling Techniques with Applications Part II. Forecasting.
MBA.782.ForecastingCAJ Demand Management Qualitative Methods of Forecasting Quantitative Methods of Forecasting Causal Relationship Forecasting Focus.
Time Series Analysis and Forecasting
Chapter 6 Business and Economic Forecasting Root-mean-squared Forecast Error zUsed to determine how reliable a forecasting technique is. zE = (Y i -
Lesson 5.1 Forecasting Moving Averages Exponential Smoothing.
10B11PD311 Economics. Process of predicting a future event on the basis of past as well as present knowledge and experience Underlying basis of all business.
Lecture 12 Time Series Model Estimation
Time Series Analysis Lecture 11
1 BABS 502 Moving Averages, Decomposition and Exponential Smoothing Revised March 14, 2010.
Cycles and Exponential Smoothing Models Materials for this lecture Lecture 10 Cycles.XLS Lecture 10 Exponential Smoothing.XLSX Read Chapter 15 pages
Economics 173 Business Statistics Lecture 27 © Fall 2001, Professor J. Petry
Lecture 9 Seasonal Models Materials for this lecture Lecture 9 Seasonal Analysis.XLSX Read Chapter 15 pages 8-18 Read Chapter 16 Section 14.
Forecasting is the art and science of predicting future events.
3-1Forecasting CHAPTER 3 Forecasting McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 by The McGraw-Hill.
3-1Forecasting William J. Stevenson Operations Management 8 th edition.
Managerial Decision Modeling 6 th edition Cliff T. Ragsdale.
Chapter 15 Forecasting. Forecasting Methods n Forecasting methods can be classified as qualitative or quantitative. n Such methods are appropriate when.
1 Doing Statistics for Business Doing Statistics for Business Data, Inference, and Decision Making Marilyn K. Pelosi Theresa M. Sandifer Chapter 13 Time.
Lecture 12 Time Series Model Estimation Materials for lecture 12 Read Chapter 15 pages 30 to 37 Lecture 12 Time Series.XLSX Lecture 12 Vector Autoregression.XLSX.
Chapter 11 – With Woodruff Modications Demand Management and Forecasting Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Chapter 3 Lecture 4 Forecasting. Time Series is a sequence of measurements over time, usually obtained at equally spaced intervals – Daily – Monthly –
TIME SERIES MODELS. Definitions Forecast is a prediction of future events used for planning process. Time Series is the repeated observations of demand.
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
DSCI 346 Yamasaki Lecture 7 Forecasting.
Short-Term Forecasting
Forecasting Chapter 9.
Lecture 12 Time Series Model Estimation
Chapter 11: Forecasting Models
Lecture 9 Seasonal Models
AGEC 622 How do you make plans? How do you make decisions?
Lecture 9 Seasonal Models
“The Art of Forecasting”
Chapter 4: Seasonal Series: Forecasting and Decomposition
FORCASTING AND DEMAND PLANNING
MOVING AVERAGES AND EXPONENTIAL SMOOTHING
MBF1413 | Quantitative Methods Prepared by Dr Khairul Anuar
Chap 4: Exponential Smoothing
Exponential Smoothing
TIME SERIES MODELS – MOVING AVERAGES.
Presentation transcript:

Cycles and Exponential Smoothing Models Materials for this lecture Lecture 10 Cycles.XLS Lecture 10 Exponential Smoothing.XLSX Read Chapter 15 pages 18-30 Read Chapter 16 Section 14

How Does Regression Work? Yt = a + b1 X1t + b2 Tt + b3 Yt-1 + b4 SIN()t + b4 COS()t

A Score for Your Forecast? MAPE -- Mean absolute percent error Statistic often used to determine how good your forecast is at forecasting the historical period MAPE = ∑ [ (Ai – Fi) / Ai ] * (100/N) Where Ai is the actual value in period i and Fi is the forecasted value in period i N is the number of historical periods MAPE is the average percentage error for a forecast

How Good is Your Forecast? Can your forecast beat a Moving Average? Business forecasters use Moving Average as a reference forecast. They compare the: MAPE for MA model MAPE for your model Example of two Data Series X with a Moving Average MAPE of 23% Your structural model’s MAPE of 15% Y with a Moving Average MAPE of 12% Your structural model’s MAPE of 10% Which is the better model?

Cycles, Seasonal Decomposition and Exponential Smoothing Models Business cycle Beef cycle Hog cycle Weather cycle? Cycles caused by over correction of an economic system The Cob Web Theorem in action

Cycles and Exponential Smoothing Models Cyclical analysis involves analyzing data for underlying cycles Estimate the length of an average cycle Forecast Y variable in part based on cycle length, may still include trend, seasonal, and structural variables Exponential Smoothing is the most often used forecasting method in industry Easy to use and update, very flexible Only forecasts a few periods ahead is its major disadvantage

Cyclical Analysis Models Harmonic regression model estimated with OLS regression used to estimate cycle length Sin and Cos use CL variable Recall Seasonal analysis used SL Length of data needed: Enough observations to observe several cycles Two considerations in estimating cycle length and specifying the OLS model Annual data can easily exhibit a cycle Monthly data can show a seasonal pattern around a multiple year cycle

Cyclical Analysis Models Define CL = Number of years in the cycle CL is used in both the Sin and Cos functions If you are using Annual data CL equals the number of years for the cycle If you are using Monthly data Define CL = SL * No. Years for cycle length where SL = 12 number of months in a year If you are using Quarterly data where SL = 4 number of quarters in a year

Cyclical Analysis Models OLS regression model for annual data Ŷ = a + b1T + b2 Sin(2*ρi()*T/CL) + b3 Cos(2*ρi()*T/CL) where: CL = possible number of years for a cycle Steps to estimate best cycle length with Simetar Enter CL in a cell Reference the cell with CL to calculate all of the Sin() and Cos() values in the X matrix Estimate regression model Change the value for CL, observe the F ratio or MAPE Repeat process for numerous CL values and find the CL associated with the largest F ratio or the lowest MAPE

Cyclical Analysis Models OLS regression model for Monthly data Ŷ = a +b1T+ b2 Sin(2*ρi*T/SL) + b3 Cos(2*ρi*T/SL) + b4 Sin(2*ρi*T/CL) + b5 Cos(2*ρi*T/CL) where: SL = No. months (quarters, or weeks) in a year and CL = SL * No. years for a cycle to Test Steps to estimate the best cycle length with Simetar Enter the SL value in a cell Calculate a value for CL where: CL = SL * Years Refer to the cell with SL to calculate the first Sin() and Cos() values in your X matrix Refer to the cell with CL to calculate the second Sin() and Cos() values in your X matrix Estimate regression model in Simetar Change the no. of years used to calculate CL, record F or MAPE Repeat process for different CL values for no. of years and pick the CL associated with the highest F or the lowest MAPE

Cyclical Analysis Models with Annual Data Part of the Y and X matrix for annual data Sin and Cos functions refer to CL in C49

Cyclical Analysis Models with Monthly Data Y and X matrix for a monthly data series Sin and Cos functions refer to CL and SL in C11 and F11 Lecture 4

Cyclical Analysis Model Results Sample table of R2 and MAPE for CL’s CL = 9 for the chart and regression shown here, based on maximum MAPE

Exponential Smoothing Models ES is the most popular forecasting method Very good for forecasting a few periods Like moving average, but greater weights placed on more recent observations MA assumes equal weights for each lagged value, i.e., XT+I =(XT-3 + XT-2 + XT-1 ) / 3 ES assumes weights are different i.e., XT+I =((1-β) * XT-2 + β * XT-1 ) / 3

Exponential Smoothing Models 2. Additive seasonal variability with an additive trend (1,1) 1. No trend and additive seasonal variability (1,0) 3. Multiplicative seasonal variability with an additive trend (2,1) 4. Multiplicative seasonal variability with a multiplicative trend (2,2)

Exponential Smoothing Models 5. Dampened trend with additive seasonal variability (1,1) 6. Multiplicative seasonal variability and dampened trend (2,2) Select the type of model to fit based on the presence of Trend – additive or multiplicative, dampened or not Seasonal variability – additive or multiplicative Do this prior to the estimation if not using Simetar. With Simetar you can experiment with different specifications after the model is estimated Can select 3 seasonal effects: none, additive, multiplicative Can select 3 trend effects: none, additive, multiplicative

Exponential Smoothing Models Different forms of ES models (options in Simetar) 1. Simple exponential smoothing, additive seasonal and no trend (1 seasonal ,0 trend) 2. Additive seasonal and additive trend (1,1) 3. Additive trend and multiplicative seasonal variability (2,1) 4. Multiplicative trend and multiplicative seasonal variability (2,2) 5. Dampened trend ES with additive seasonal variability (1,1) 6. Dampened trend ES with multiplicative seasonal variability (2,2) Numbers match chart numbers in last two slides Numbers in ()’s match Simetar ES option settings

Exponential Smoothing Forecasts Using the Forecasting Icon for ES Data on the Excel toolbar to get Data Ribbon Select Solver Close Solver Select the “Exponential Smoothing” tab in the menu Specify the data series to forecast (see next slide for the menu) Provide initial guesses for Dampening Factor (0.25), Optional Trend Factor (0.5), and Optional Season Factor (0.5) if monthly or quarterly data Indicate the Optional Seasons per Period as 12 if monthly data Forecast Periods of 1 to 6

Exponential Smoothing Models Simetar estimates many different forms of ES models Provides deterministic forecasts Provides probabilistic forecasts Parameters for ES model estimated by Solver to minimize MAPE for residuals PRIOR to running ES, You MUST open Solver and close it so Simetar can Optimize Parameters Provide starting guesses for parameters 0.25 to 0.50 Enter no. of periods/year if monthly or quarterly data

Exponential Smoothing Models Initial Parameters for ES Dampening Factor is required for all models – good guess is 0.25 Optional Trend factor entered as 0.5 if the data have any trend Optional Seasonal factor, 0.5, if the data are monthly or you have >30 years annual data (with annual data you have a cycle) Optional Seasons per Period Indicate the number of months for seasonal effect as 12 Indicate cycle length if using annual data, say 9 years

Exponential Smoothing Models ES Options Trend Method 0 No trend dampening 1 Dampened Additive 2 Dampened Multiplicative Season Method 0 No seasonal effects 1 Additive seasonal effect 2 Multiplicative seasonal effect Stochastic Forecast TRUE FALSE

Exponential Smoothing Models Experiment with alternative settings for the Trend and Seasonal Smoothing variables to see which combination is best All possible combinations are listed below Look for the model formulation with the lowest MAPE

Exponential Smoothing Models 2. Additive seasonal variability with an additive trend (1,1) 1. No trend and additive seasonal variability (1,0) 3. Multiplicative seasonal variability with an additive trend (2,1) 4. Multiplicative seasonal variability with a multiplicative trend (2,2)

Exponential Smoothing Models 5. Dampened trend with additive seasonal variability (1,1) 6. Multiplicative seasonal variability and dampened trend (2,2) Select the type of model to fit based on the presence of Trend – additive or multiplicative, dampened or not Seasonal variability – additive or multiplicative Do this prior to the estimation. With Simetar you can experiment with different specifications after model is estimated Can select 3 seasonal effects: none, additive, multiplicative Can select 3 trend effects: none, additive, multiplicative