Structuring System Requirements: Process Modeling

Slides:



Advertisements
Similar presentations
Information Systems Analysis and Design
Advertisements

Chapter 5 Structuring System Requirements: Process Modeling
Systems Analysis Requirements structuring Process Modeling
Chapter 7 Structuring System Process Requirements
Chapter 7 Structuring System Process Requirements
© 2005 by Prentice Hall 7-1 Chapter 7 Structuring System Process Requirements Modern Systems Analysis and Design Fourth Edition Jeffrey A. Hoffer Joey.
Chapter 7 Structuring System Process Requirements
Chapter 7 Structuring System Process Requirements
Copyright 2006 Prentice-Hall, Inc. Essentials of Systems Analysis and Design Third Edition Joseph S. Valacich Joey F. George Jeffrey A. Hoffer Chapter.
Copyright 2001 Prentice-Hall, Inc. Object Oriented Aproach to System Requirements: Process Modeling 7.1 Chapter 7.
Chapter 7 Structuring System Process Requirements
Dataflow modelling: Context and Data Flow Diagrams
Chapter 7 Analyzing System Process Requirements
Jump to first page Chapter 2 System Analysis - Process Modeling.
Data Flow Diagrams Mechanics.
Modern Systems Analysis and Design
Structuring System Requirements: Process Modeling
Copyright 2004 Prentice-Hall, Inc. Essentials of Systems Analysis and Design Second Edition Joseph S. Valacich Joey F. George Jeffrey A. Hoffer Chapter.
MIS 461: Structured System Analysis and Design Dr. A.T. Jarmoszko
Copyright 2002 Prentice-Hall, Inc. Modern Systems Analysis and Design Third Edition Jeffrey A. Hoffer Joey F. George Joseph S. Valacich Chapter 8 Structuring.
Modern Systems Analysis and Design Third Edition
System Analysis and Design
Chapter 7 Structuring System Process Requirements
Chapter 8 Structuring System Requirements: Process Modeling
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall 6.1.
Chapter 7 Structuring System Process Requirements Modern Systems Analysis and Design Sixth Edition.
Chapter 1: Data Flow Diagram Structuring System Process Requirements
Copyright 2002 Prentice-Hall, Inc. Modern Systems Analysis and Design Third Edition Jeffrey A. Hoffer Joey F. George Joseph S. Valacich Chapter 8 Structuring.
Chapter 7 Structuring System Process Requirements Modern Systems Analysis and Design Sixth Edition Jeffrey A. Hoffer Joey F. George Joseph S. Valacich.
Structuring System Process Requirements. Learning Objectives Understand the logical modeling of processes by studying examples of data flow diagrams (DFDs).
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall 6.1.
Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall Chapter 6 Structuring System Requirements: Process Modeling 6.1.
Chapter 7 Structuring System Process Requirements
Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall Essentials of Systems Analysis and Design Fourth Edition Joseph S. Valacich Joey F.
Computer System Analysis Chapter 8 Structuring System Requirements: Process Modeling Dr. Sana’a Wafa Al-Sayegh 1 st quadmaster University of Palestine.
Copyright 2002 Prentice-Hall, Inc. Modern Systems Analysis and Design Third Edition Jeffrey A. Hoffer Joey F. George Joseph S. Valacich Chapter 8 Structuring.
Chapter 7 Structuring System Process Requirements
Business Analysis Information determination Information specification Alternative generation and selection.
System Decomposition Overview. Data Flow Diagrams Despite the name “Data Flow Diagrams”, DFD have a process, rather than a data, focus We represent all.
Copyright 2001 Prentice-Hall, Inc. Essentials of Systems Analysis and Design Joseph S. Valacich Joey F. George Jeffrey A. Hoffer Chapter 5 Structuring.
Copyright 2002 Prentice-Hall, Inc. Chapter 7 Structuring System Requirements: Process Modeling.
Modern Systems Analysis and Design Fifth Edition
Chapter 7 Structuring System Process Requirements Modern Systems Analysis and Design Fourth Edition Jeffrey A. Hoffer Joey F. George Joseph S. Valacich.
Software Analysis 1 PROCESS MODELING: Data Flow Diagrams (DFDs)
© 2005 by Prentice Hall Chapter 7 Structuring System Process Requirements Modern Systems Analysis and Design Fourth Edition Jeffrey A. Hoffer Joey F. George.
Chapter 7 Structuring System Process Requirements Modern Systems Analysis and Design Sixth Edition Jeffrey A. Hoffer Joey F. George Joseph S. Valacich.
C_ITIP211 LECTURER: E.DONDO. Unit 3 : PROCESS MODELING.
MIS 360: System Analysis and Design Dr. Qasem Al-Radaideh Department of Computer Information Systems Faculty of Information Technology Yarmouk University.
7-1 Chapter 7 Structuring System Process Requirements Modern Systems Analysis and Design Fourth Edition.
Chapter 6 Structuring System Requirements: Process Modeling
Chapter 6 Structuring System Requirements: Process Modeling
Structuring System Process Requirements
Data Flow Diagrams Mechanics.
Modern Systems Analysis and Design
Chapter 8 Structuring System Requirements: Process Modeling
Process Modeling Graphically represent the processes that capture, manipulate, store, and distribute data between a system and its environment Models DFDs.
Modern Systems Analysis and Design Third Edition
Business System Development
Modern Systems Analysis and Design Third Edition
SDLC Phase III: Structuring System Requirements
Chapter 1: Data Flow Diagram Structuring System Process Requirements
Process & Logic Modeling
Data Flow Diagrams Mechanics.
Data Flow Diagrams Mechanics. Outline DFD symbols External entities (sources and sinks) Data Stores Data Flows Processes Types of diagrams Step by step.
Chapter 6 Structuring System Requirements: Process Modeling
MBI 630: Week 4 Process Modeling
Modern Systems Analysis and Design Third Edition
Chapter 7: Data Flow Diagram Structuring System Process Requirements
Modern Systems Analysis and Design Third Edition
Modern Systems Analysis and Design Third Edition
Presentation transcript:

Structuring System Requirements: Process Modeling Modern Systems Analysis and Design Jeffrey A. Hoffer Joey F. George Joseph S. Valacich Structuring System Requirements: Process Modeling 8.1 Copyright 2002 Prentice-Hall, Inc.

Process Modeling Graphically represent the processes that capture, manipulate, store and distribute data between a system and its environment and among system components Data flow diagrams (DFD) Graphically illustrate movement of data between external entities and the processes and data stores within a system 8.2

Process Modeling Modeling a system’s process Utilize information gathered during requirements determination Structure of the data is also modeled in addition to the processes 8.3

Process Modeling Deliverables and outcomes (continued) Context data flow diagram (DFD) Scope of system DFDs of new logical system Technology independent Show data flows, structure and functional requirements of new system 8.4

Process Modeling Deliverables and outcomes (continued) Project dictionary and CASE repository 8.5

DFD Symbols

Data Flow Diagramming Mechanics Depicts data that are in motion and moving as a unit from one place to another in the system. Drawn as an arrow Select a meaningful name to represent the data 8.7

Data Flow Diagramming Mechanics Data Store Depicts data at rest May represent data in File folder Computer-based file Notebook The name of the store as well as the number are recorded in between lines 8.8

Data Flow Diagramming Mechanics Process Depicts work or action performed on data so that they are transformed, stored or distributed Number of process as well as name are recorded 8.9

Data Flow Diagramming Mechanics Source/Sink Depicts the origin and/or destination of the data Sometimes referred to as an external entity Drawn as a square symbol Name states what the external agent is Because they are external, many characteristics are not of interest to us 8.10

Data Flow Diagramming Definitions Context Diagram A data flow diagram (DFD) of the scope of an organizational system that shows the system boundaries, external entities that interact with the system and the major information flows between the entities and the system Level-O Diagram A data flow diagram (DFD) that represents a system’s major processes, data flows and data stores at a high level of detail 8.11

Developing DFDs: An Example Hoosier Burger’s automated food ordering system Context Diagram (Figure 8-4) contains no data stores Next step is to expand the context diagram to show the breakdown of processes (Figure 8-5) 8.12

Figure 8-4 Context diagram of Hoosier Burger’s food ordering system 8.13

Figure 8-5 Level-0 DFD of Hoosier Burger’s food ordering system 8.14

Data Flow Diagramming Rules Basic rules that apply to all DFDs Inputs to a process are always different than outputs Objects always have a unique name In order to keep the diagram uncluttered, you can repeat data stores and sources/sinks on a diagram 8.15

DFD Diagramming Rules Process No process can have only outputs or only inputs…processes must have both outputs and inputs. Process labels should be verb phrases.

DFD Diagramming Rules Data Store All flows to or from a data store must move through a process. Data store labels should be noun phrases.

DFD Diagramming Rules Source/Sink No data moves directly between external entities without going through a process. Interactions between external entities without intervening processes are outside the system and therefore not represented in the DFD. Source and sink labels should be noun phrases.

DFD Diagramming Rules Data Flow Bidirectional flow between process and data store is represented by two separate arrows. Forked data flow must refer to exact same data item (not different data items) from a common location to multiple destinations.

DFD Diagramming Rules Data Flow (cont.) Joined data flow must refer to exact same data item (not different data items) from multiple sources to a common location. Data flow cannot go directly from a process to itself, must go through intervening processes.

Data Flow Diagramming Rules Data Flow (Continued) A data flow to a data store means update A data flow from a data store means retrieve or use A data flow has a noun phrase label 8.21

Decomposition of DFDs Functional decomposition Level-N Diagrams Act of going from one single system to many component processes Repetitive procedure Lowest level is called a primitive DFD Level-N Diagrams A DFD that is the result of n nested decompositions of a series of subprocesses from a process on a level-0 diagram 8.22

Level-1 DFD Level-1 DFD shows the sub-processes of one of the processes in the Level-0 DFD. This is a Level-1 DFD for Process 4.0. Processes are labeled 4.1, 4.2, etc. These can be further decomposed in more primitive (lower-level) DFDs if necessary.

Level-n DFD Level-n DFD shows the sub-processes of one of the processes in the Level n-1 DFD. This is a Level-2 DFD for Process 4.3. Processes are labeled 4.3.1, 4.3.2, etc. If this is the lowest level of the hierarchy, it is called a primitive DFD.

DFD Balancing The conservation of inputs and outputs to a data flow process when that process is decomposed to a lower level Balanced means: Number of inputs to lower level DFD equals number of inputs to associated process of higher-level DFD Number of outputs to lower level DFD equals number of outputs to associated process of higher-level DFD

Unbalanced DFD 1 input 1 output This is unbalanced because the process of the context diagram has only one input but the Level-0 diagram has two inputs. 2 inputs 1 output

Balanced DFD 1 input 2 outputs These are balanced because the numbers of inputs and outputs of context diagram process equal the number of inputs and outputs of Level-0 diagram.