Binary Trees "A tree may grow a thousand feet tall, but its leaves will return to its roots." -Chinese Proverb.

Slides:



Advertisements
Similar presentations
CS Fall 2012, Lab 08 Haohan Zhu. Boston University Slideshow Title Goes Here CS Fall 2012, Lab /17/2015 Tree - Data Structure  Basic.
Advertisements

Chapter 10: Trees. Definition A tree is a connected undirected acyclic (with no cycle) simple graph A collection of trees is called forest.
Binary Trees, Binary Search Trees CMPS 2133 Spring 2008.
1 Trees most slides taken from Mike Scott, UT Austin.
1 Trees. 2 Outline –Tree Structures –Tree Node Level and Path Length –Binary Tree Definition –Binary Tree Nodes –Binary Search Trees.
CS 206 Introduction to Computer Science II 09 / 22 / 2008 Instructor: Michael Eckmann.
Rooted Trees. More definitions parent of d child of c sibling of d ancestor of d descendants of g leaf internal vertex subtree root.
© 2006 Pearson Addison-Wesley. All rights reserved11 A-1 Chapter 11 Trees.
Trees CMSC 433 Chapter 8.1 Nelson Padua-Perez Bill Pugh.
CSC 2300 Data Structures & Algorithms February 6, 2007 Chapter 4. Trees.
Trees Chapter 8. 2 Tree Terminology A tree consists of a collection of elements or nodes, organized hierarchically. The node at the top of a tree is called.
1 Trees Tree nomenclature Implementation strategies Traversals –Depth-first –Breadth-first Implementing binary search trees.
CS261 Data Structures Trees Introduction and Applications.
Introduction Of Tree. Introduction A tree is a non-linear data structure in which items are arranged in sequence. It is used to represent hierarchical.
Lecture 10 Trees –Definiton of trees –Uses of trees –Operations on a tree.
Trees CSC 172 SPRING 2002 LECTURE 14. Lists We have seen lists: public class Node { Object data; Node next; } 
Tree (new ADT) Terminology:  A tree is a collection of elements (nodes)  Each node may have 0 or more successors (called children)  How many does a.
Topic 17 Introduction to Trees
1 Introduction to trees Instructor: Dimitrios Kosmopoulos.
Compiled by: Dr. Mohammad Omar Alhawarat
Trees Chapter 8. 2 Tree Terminology A tree consists of a collection of elements or nodes, organized hierarchically. The node at the top of a tree is called.
TREES. What is a tree ? An Abstract Data Type which emulates a tree structure with a set of linked nodes The nodes within a tree are organized in a hierarchical.
Trees CS 105. L9: Trees Slide 2 Definition The Tree Data Structure stores objects (nodes) hierarchically nodes have parent-child relationships operations.
Data Structures TREES.
Trees : Part 1 Section 4.1 (1) Theory and Terminology (2) Preorder, Postorder and Levelorder Traversals.
Disusun Oleh : Budi Arifitama Pertemuan ke-8. Define trees as data structures Define the terms associated with trees Discuss tree traversal algorithms.
Min Chen School of Computer Science and Engineering Seoul National University Data Structure: Chapter 6.
Trees By P.Naga Srinivasu M.tech,(MBA). Basic Tree Concepts A tree consists of finite set of elements, called nodes, and a finite set of directed lines.
M180: Data Structures & Algorithms in Java Trees & Binary Trees Arab Open University 1.
DATA STRUCTURE BS(IT)3rd. Tree An Introduction By Yasir Mustafa Roll No. BS(IT) Bahauddin Zakariya University, Multan.
Data Structures Lakshmish Ramaswamy. Tree Hierarchical data structure Several real-world systems have hierarchical concepts –Physical and biological systems.
© 2006 Pearson Addison-Wesley. All rights reserved11 A-1 Chapter 11 Trees.
TREES General trees Binary trees Binary search trees AVL trees Balanced and Threaded trees.
Topic 18 Binary Trees 樹高千丈﹐落葉巋根 "A tree may grow a thousand feet tall, but its leaves will return to its roots." -Chinese Proverb.
1 Trees. 2 Trees Trees. Binary Trees Tree Traversal.
Tree Representation and Terminology Binary Trees Binary Search Trees Pointer-Based Representation of a Binary Tree Array-Based Representation of a Binary.
What is a Tree? Formally, we define a tree T as a set of nodes storing elements such that the nodes have a parent-child relationship, that satisfies the.
Chapter 10 Trees © 2006 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.
Data Structures and Design in Java © Rick Mercer
CSCE 210 Data Structures and Algorithms
Source Code for Data Structures and Algorithm Analysis in C (Second Edition) – by Weiss
Binary Trees "The best time to plant a tree is twenty years ago. The second best time is now." -Chinese proverb Real programmmers always confuse Christmas.
Chapter 11 Trees © 2011 Pearson Addison-Wesley. All rights reserved.
CMSC 341 Introduction to Trees.
Section 8.1 Trees.
ITEC 2620M Introduction to Data Structures
i206: Lecture 13: Recursion, continued Trees
Binary Trees, Binary Search Trees
Data Structures and Database Applications Binary Trees in C#
TREES General trees Binary trees Binary search trees AVL trees
CS223 Advanced Data Structures and Algorithms
Trees 7/14/2009.
Trees.
Topic 18 Binary Trees "A tree may grow a thousand feet tall, but its leaves will return to its roots." -Chinese Proverb.
Week nine-ten: Trees Trees.
Data Structures: Trees and Binary Trees
Trees Definitions Implementation Traversals K-ary Trees
Trees (Part 1, Theoretical)
CSE 373, Copyright S. Tanimoto, 2002 Binary Trees -
CMSC 202 Trees.
Lecture 36 Section 12.2 Mon, Apr 23, 2007
Binary Trees, Binary Search Trees
Trees.
CSE 373, Copyright S. Tanimoto, 2001 Binary Trees -
CS210- Lecture 9 June 20, 2005 Announcements
Chapter 20: Binary Trees.
Binary Trees.
Tree and its terminologies
Binary Trees, Binary Search Trees
8.2 Tree Traversals Chapter 8 - Trees.
Presentation transcript:

Binary Trees "A tree may grow a thousand feet tall, but its leaves will return to its roots." -Chinese Proverb

Definitions A tree is an abstract data type one entry point, the root Each node is either a leaf or an internal node An internal node has 1 or more children, nodes that can be reached directly from that internal node. The internal node is said to be the parent of its child nodes root node internal nodes leaf nodes CS314 Binary Trees

Properties of Trees Only access point is the root All nodes, except the root, have one parent like the inheritance hierarchy in Java Traditionally trees drawn upside down root leaves CS314 Binary Trees

Properties of Trees and Nodes root siblings: two nodes that have the same parent edge: the link from one node to another path length: the number of edges that must be traversed to get from one node to another edge siblings path length from root to this node is 3 Binary Trees

More Properties of Trees depth: the path length from the root of the tree to this node height of a node: The maximum distance (path length) of any leaf from this node a leaf has a height of 0 the height of a tree is the height of the root of that tree descendants: any nodes that can be reached via 1 or more edges from this node ancestors: any nodes for which this node is a descendant CS314 Binary Trees

Tree Visualization D B C F E A G H J I K L M N O CS314 Binary Trees

Clicker Question 1 What is the depth of the node that contains M on the previous slide? 1 2 3 4 CS314 Binary Trees

Binary Trees There are many variations on trees but we will start with binary trees binary tree: each node has at most two children the possible children are usually referred to as the left child and the right child parent right child left child CS314 Binary Trees

Full Binary Tree full binary tree: a binary tree is which each node was exactly 2 or 0 children CS314 Binary Trees

Complete Binary Tree complete binary tree: a binary tree in which every level, except possibly the deepest is completely filled. At depth n, the height of the tree, all nodes are as far left as possible Where would the next node go to maintain a complete tree? CS314 Binary Trees

Binary Tree Traversals Many algorithms require all nodes of a binary tree be visited and the contents of each node processed or examined. There are 4 traditional types of traversals preorder traversal: process the root, then process all sub trees (left to right) in-order traversal: process the left sub tree, process the root, process the right sub tree post order traversal: process the left sub tree, process the right sub tree, then process the root level order traversal: starting from the root of a tree, process all nodes at the same depth from left to right, then proceed to the nodes at the next depth. CS314 Binary Trees

Results of Traversals To determine the results of a traversal on a given tree draw a path around the tree. start on the left side of the root and trace around the tree. The path should stay close to the tree. 12 pre order: process when pass down left side of node 12 49 13 5 42 in order: process when pass underneath node 13 49 5 12 42 post order: process when pass up right side of node 13 5 49 42 12 49 42 13 5 CS314 Binary Trees