Introduction to Trees Section 11.1.

Slides:



Advertisements
Similar presentations
Chapter 11 Trees Graphs III (Trees, MSTs) Reading: Epp Chp 11.5, 11.6.
Advertisements

Trees Chapter 11.
Chapter 9 Graphs.
Chapter 10: Trees. Definition A tree is a connected undirected acyclic (with no cycle) simple graph A collection of trees is called forest.
CMPS 2433 Discrete Structures Chapter 5 - Trees R. HALVERSON – MIDWESTERN STATE UNIVERSITY.
1 Chapter 10 Trees. Tree Definition 1. A tree is a connected undirected graph with no simple circuits. Theorem 1. An undirected graph is a tree if and.
1 Copyright M.R.K. Krishna Rao 2003 Ch 9 - Trees Definition: A tree is a connected undirected graph with no simple circuits. Since a tree cannot have a.
1 Section 9.1 Introduction to Trees. 2 Tree terminology Tree: a connected, undirected graph that contains no simple circuits –must be a simple graph:
Discrete Mathematics – CIS166
Discrete Mathematics Transparency No. 8-1 Chapter 8 Trees.
Section 3.1 Properties of Trees Sarah Graham. Tree Talk: Vocabulary oTree: a tree is a special type of graph that contains designated vertex called a.
Lists A list is a finite, ordered sequence of data items. Two Implementations –Arrays –Linked Lists.
A tree is a simple graph satisfying: if v and w are vertices and there is a path from v to w, it is a unique simple path. a b c a b c.
Rooted Trees. More definitions parent of d child of c sibling of d ancestor of d descendants of g leaf internal vertex subtree root.
Module #1 - Logic 1 Based on Rosen, Discrete Mathematics & Its Applications. Prepared by (c) , Michael P. Frank and Modified By Mingwu Chen Trees.
03/01/2005Tucker, Sec Applied Combinatorics, 4th Ed. Alan Tucker Section 3.1 Properties of Trees Prepared by Joshua Schoenly and Kathleen McNamara.
Discrete Mathematics Lecture 9 Alexander Bukharovich New York University.
KNURE, Software department, Ph , N.V. Bilous Faculty of computer sciences Software department, KNURE The trees.
Trees and Tree Traversals Prof. Sin-Min Lee Department of Computer Science San Jose State University.
Let G be a pseudograph with vertex set V, edge set E, and incidence mapping f. Let n be a positive integer. A path of length n between vertex v and vertex.
May 5, 2015Applied Discrete Mathematics Week 13: Boolean Algebra 1 Dijkstra’s Algorithm procedure Dijkstra(G: weighted connected simple graph with vertices.
BCT 2083 DISCRETE STRUCTURE AND APPLICATIONS
LOGO.  Trees:  In these slides: Introduction to trees Applications of trees Tree traversal 2.
Section 10.1 Introduction to Trees These class notes are based on material from our textbook, Discrete Mathematics and Its Applications, 6 th ed., by Kenneth.
May 1, 2002Applied Discrete Mathematics Week 13: Graphs and Trees 1News CSEMS Scholarships for CS and Math students (US citizens only) $3,125 per year.
Foundations of Discrete Mathematics
Tree A connected graph that contains no simple circuits is called a tree. Because a tree cannot have a simple circuit, a tree cannot contain multiple.
Copyright © Cengage Learning. All rights reserved. CHAPTER 10 GRAPHS AND TREES.
Module #19: Graph Theory: part II Rosen 5 th ed., chs. 8-9.
Discrete Structures Lecture 12: Trees Ji Yanyan United International College Thanks to Professor Michael Hvidsten.
5.5.2 M inimum spanning trees  Definition 24: A minimum spanning tree in a connected weighted graph is a spanning tree that has the smallest possible.
Trees – Chapter 9 Slides courtesy of Dr. Michael P. Frank University of Florida Dept. of Computer & Information Science & Engineering.
5.5.3 Rooted tree and binary tree  Definition 25: A directed graph is a directed tree if the graph is a tree in the underlying undirected graph.  Definition.
Data Structures TREES.
Chap 8 Trees Def 1: A tree is a connected,undirected, graph with no simple circuits. Ex1. Theorem1: An undirected graph is a tree if and only if there.
5.5.2 M inimum spanning trees  Definition 24: A minimum spanning tree in a connected weighted graph is a spanning tree that has the smallest possible.
Trees : Part 1 Section 4.1 (1) Theory and Terminology (2) Preorder, Postorder and Levelorder Traversals.
Discrete Mathematics Chapter 5 Trees.
CS 103 Discrete Structures Lecture 23 Trees (1). Second Midterm Exam 1 st Lecture in December (same time as the lecture) 75 minute duration Will cover.
1 Slides by Sylvia Sorkin, Community College of Baltimore County - Essex Campus Trees.
Chapter 10: Trees A tree is a connected simple undirected graph with no simple circuits. Properties: There is a unique simple path between any 2 of its.
Data Structures Lakshmish Ramaswamy. Tree Hierarchical data structure Several real-world systems have hierarchical concepts –Physical and biological systems.
CHAPTER 11 TREES INTRODUCTION TO TREES ► A tree is a connected undirected graph with no simple circuit. ► An undirected graph is a tree if and only.
1 Trees What is a Tree? Tree terminology Why trees? What is a general tree? Implementing trees Binary trees Binary tree implementation Application of Binary.
Discrete Structures – CNS 2300 Text Discrete Mathematics and Its Applications (5 th Edition) Kenneth H. Rosen Chapter 9 Trees.
1 Trees : Part 1 Reading: Section 4.1 Theory and Terminology Preorder, Postorder and Levelorder Traversals.
Discrete Mathematics Chapter 10 Trees.
Chapter 11. Chapter Summary  Introduction to trees (11.1)  Application of trees (11.2)  Tree traversal (11.3)  Spanning trees (11.4)
Chapter 11. Chapter Summary Introduction to Trees Applications of Trees (not currently included in overheads) Tree Traversal Spanning Trees Minimum Spanning.
Section10.1: Introduction to Trees
Trees.
Applied Discrete Mathematics Week 15: Trees
CSCE 210 Data Structures and Algorithms
Graph Graphs and graph theory can be used to model:
Discrete Mathematicsq
Trees Chapter 11.
12. Graphs and Trees 2 Summary
CMSC 341 Introduction to Trees.
Advanced Algorithms Analysis and Design
Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 10 Trees Slides are adopted from “Discrete.
Trees.
Discrete Mathematics – CIS166
Trees L Al-zaid Math1101.
Lecture 36 Section 12.2 Mon, Apr 23, 2007
Trees 11.1 Introduction to Trees Dr. Halimah Alshehri.
Discrete Mathematics – CIS166
Trees 11.1 Introduction to Trees Dr. Halimah Alshehri.
And the Final Subject is…
Trees Chapter 11.
Presentation transcript:

Introduction to Trees Section 11.1

Trees Definition: A tree is a connected undirected graph with no simple circuits. Example: Which of these graphs are trees? Solution: G1 and G2 are trees - both are connected and have no simple circuits. Because e, b, a, d, e is a simple circuit, G3 is not a tree. G4 is not a tree because it is not connected.

Trees (continued) Theorem: An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Theorem: A tree with n vertices has n − 1 edges.

Trees as Models

Rooted Trees Definition: A rooted tree is a tree in which one vertex has been designated as the root and every edge is directed away from the root. An unrooted tree is converted into different rooted trees when different vertices are chosen as the root.

Rooted Tree Terminology Terminology for rooted trees is a mix from botany and genealogy (such as this family tree of the Bernoulli family of mathematicians). If v is a vertex of a rooted tree other than the root, the parent of v is the unique vertex u such that there is a directed edge from u to v. When u is a parent of v, v is called a child of u. Vertices with the same parent are called siblings. The ancestors of a vertex are the vertices in the path from the root to this vertex, excluding the vertex itself and including the root. The descendants of a vertex v are those vertices that have v as an ancestor. A vertex of a rooted tree with no children is called a leaf. Vertices that have children are called internal vertices (parents). If a is a vertex in a tree, the subtree with a as its root is the subgraph of the tree consisting of a and its descendants and all edges incident to these descendants.

Terminology for Rooted Trees Example: In the rooted tree T (with root a): Find the parent of c, the children of g, the siblings of h, the ancestors of e, and the descendants of b. Find all internal vertices and all leaves. What is the subtree rooted at G? Solution: The parent of c is b. The children of g are h, i, and j. The siblings of h are i and j. The ancestors of e are c, b, and a. The descendants of b are c, d, and e. The internal vertices are a, b, c, g, h, and j. The leaves are d, e, f, i, k, l, and m. We display the subtree rooted at g.

m-ary Rooted Trees Definition: A rooted tree is called an m-ary tree if every internal vertex has no more than m children. The tree is called a full m-ary tree if every internal vertex has exactly m children. An m-ary tree with m = 2 is called a binary tree. Example: Are the following rooted trees full m-ary trees for some positive integer m? Solution: T1 is a full binary tree because each of its internal vertices has two children. T2 is a full 3-ary tree because each of its internal vertices has three children. In T3 each internal vertex has five children, so T3 is a full 5-ary tree. T4 is not a full m-ary tree for any m because some of its internal vertices have two children and others have three children.

Counting Vertices in Full m-Ary Trees Theorem 3: A full m-ary tree with i internal vertices has n = mi + 1 vertices. Proof : Every vertex, except the root, is the child of an internal vertex. Because each of the i internal vertices has m children, there are mi vertices in the tree other than the root. Hence, the tree contains n = mi + 1 vertices.

Level of vertices and height of trees When working with trees, we often want to have rooted trees where the subtrees at each vertex contain paths of approximately the same length. To make this idea precise we need some definitions: The level of a vertex v in a rooted tree is the length of the unique path from the root to this vertex. The height of a rooted tree is the maximum of the levels of the vertices. Example: (i) Find the level of each vertex in the tree to the right. (ii) What is the height of the tree? Solution: (i) The root a is at level 0. Vertices b, j, and k are at level 1. Vertices c, e, f, and l are at level 2. Vertices d, g, i, m, and n are at level 3. Vertex h is at level 4. (ii) The height is 4, since 4 is the largest level of any vertex.

The Bound for the Number of Leaves in an m-Ary Tree Theorem: There are at most mh leaves in an m-ary tree of height h. Corollary: If an m-ary tree of height h has l leaves, then h ≥ ⌈logm l⌉. If the m-ary tree is full and balanced, then h = ⌈logm l⌉. Proof?