Thermal noise reduction through LG modes

Slides:



Advertisements
Similar presentations
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
Advertisements

Stefan Hild and Andreas Freise University of Birmingham Advanced Virgo telecon, June 2008 Beam sizes and mirror curvatures for Advanced Virgo.
1st ET General meeting, Pisa, November 2008 The ET sensitivity curve with ‘conventional‘ techniques Stefan Hild and Andreas Freise University of Birmingham.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
1 New suspension study for LCGT Erina Nishida Ochanomizu University The Graduate School of Humanities and Sciences The Division of Advanced Sciences/ NAOJ.
Alban REMILLIEUX3 rd ILIAS-GW Annual General Meeting. London, October 26 th -27 th, New coatings on new substrates for low mechanical loss mirrors.
1 Kazuhiro Yamamoto Istituto Nazionale di Fisica Nucleare Sezione di Padova Substrate thermoelastic noise and thermo-optic noise at low temperature in.
Einstein gravitational wave Telescope Next steps: from technology reviews to detector design Andreas Freise for the ET WG3 working group , 2nd.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
Experimental test of higher-order LG modes in the 10m Glasgow prototype interferometer B. Sorazu, P. Fulda, B. Barr, A. Bell, C. Bond, L. Carbone, A. Freise,
Overview of coatings research and recent results at the University of Glasgow M. Abernathy, I. Martin, R. Bassiri, E. Chalkley, R. Nawrodt, M.M. Fejer,
Australia-Italy Australia 6, October 2005 LCGT project Kazuaki Kuroda LCGT Collaboration Cryogenics for LCGT.
Thermal noise from optical coatings Gregory Harry Massachusetts Institute of Technology - on behalf of the LIGO Science Collaboration - 25 July
Nawrodt 23/03/2011 Experimental Approaches for the Einstein Telescope Ronny Nawrodt on behalf of the Einstein Telescope Science Team and the ET DS Writing.
Topology comparison RSE vs. SAGNAC using GWINC S. Chelkowski, H. Müller-Ebhardt, S. Hild 21/09/2009 S. ChelkowskiSlide 1ET Workshop, Erice, 10/2009.
DFG-NSF Astrophysics Workshop Jun 2007 G Z 1 Optics for Interferometers for Ground-based Detectors David Reitze Physics Department University.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
1 Thermal noise and high order Laguerre-Gauss modes J-Y. Vinet, B. Mours, E. Tournefier GWADW meeting, Isola d’Elba May 27 th – Jun 2 nd, 2006.
Beams of the Future Mihai Bondarescu, Oleg Kogan, Yanbei Chen, Andrew Lundgreen, Ruxandra Bondarescu, David Tsang A Caltech - AEI - Cornell Collaboration.
Francesco Cottone INFN & Physics Departments of Perugia, Pisa, Florence (Collaboration Work under VIRGO Project) Thermomechanical properties of silicon.
S. ChelkowskiSlide 1LSC Meeting, Amsterdam 09/2008.
Einstein gravitational wave Telescope Which optical topologies are suitable for ET? Andreas Freise for the ET WG3 working group MG12 Paris.
Experimental investigation of dynamic Photothermal Effect
1 Kazuhiro Yamamoto Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Janyce Franc Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise,
Cryogenic Xylophone Kyoto May Kentaro Somiya Waseda Inst. for Adv. Study Collaboration work with S.Hild, K.Kokeyama, H.Mueller-Ebhardt, R.Nawrodt,
G R LIGO’s Ultimate Astrophysical Reach Eric Black LIGO Seminar April 20, 2004 Ivan Grudinin, Akira Villar, Kenneth G. Libbrecht.
Equivalence relation between non spherical optical cavities and application to advanced G.W. interferometers. Juri Agresti and Erika D’Ambrosio Aims of.
Laguerre-Gauss Modes for Future Gravitational Wave Detectors Keiko Kokeyama University of Birmingham 2 nd ET Annual Erice, Sicily, Italy
17/05/2010A. Rocchi - GWADW Kyoto2 Thermal effects: a brief introduction  In TM, optical power predominantly absorbed by the HR coating and converted.
Advanced Virgo: Optical Simulation and Design Advanced Virgo review Andreas Freise for the OSD Subsystem.
Aspen Flat Beam Profile to Depress Thermal Noise J.Agresti, R. DeSalvo LIGO-G Z.
Beams of the Future Mihai Bondarescu, Oleg Kogan, Yanbei Chen, Andrew Lundgreen, Ruxandra Bondarescu, David Tsang A Caltech - AEI - Cornell Collaboration.
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
LIGO-G R 1 Gregory Harry and COC Working Group Massachusetts Institute of Technology - Technical Plenary Session - March 17-20, 2003 LSC Meeting.
Estimating thermo-optic noise from AdLIGO coatings Embry-Riddle Andri M. Gretarsson DCC#: G Z.
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
WP2-WP3 Joint Meeting - Jena - March 1-3, Several different mechanisms contribute to the thermal noise of the mirror: Brownian (BR)(substrate, coating)
Measurement of coating mechanical loss Junko Katayama, K.Craig, K.Yamamoto, M.Ohashi ICRR 0.
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
1 Cascina – October 19, 2011 ASPERA Forum Laurent Pinard Substrates, Polishing, Coatings and Metrology for the 2 nd generation of GW detector Laurent PINARD.
STREGA WP4 coating development GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger,
Talk by Thorne, O’Shaughnessy, d’Ambrosio
Overview of the 20K configuration
B. Sorazu, P. Fulda, B. Barr, A. Bell, C. Bond, L. Carbone, A
Topology comparison RSE vs. SAGNAC using GWINC
Pros and cons of cryogenics for Einstein Telescope and Cosmic Explorer
Optimization of thermal noise for ET-LF sensitivity
Thermal noise calculations for cryogenic optics
Synopsis by Maria Ruiz-Gonzalez 12/8/16
Mirror thermal noises and its implications on the mirror design
S. Rowan, M. Fejer, E. Gustafson, R. Route, G. Zeltzer
Greg Ogin, Eric Black, Eric Gustafson, Ken Libbrecht
Laboratoire des Matériaux Avancés - Lyon
Overview of Advanced LIGO Coating Status
Main Efforts of the Core Optics WG
New Results on Photothermal Effect: Size and Coating Effect
Flat-Top Beam Profile Cavity Prototype: design and preliminary tests
Test Mass Suspensions for AIGO
Thermal Noise Interferometer Update and Status
Thermal noise and high order Laguerre-Gauss modes J-Y. Vinet, B
3rd generation ITF sensitivity curve
Sensitivity curves beyond the Advanced detectors
The ET sensitivity curve with ‘conventional‘ techniques
Presentation transcript:

Thermal noise reduction through LG modes Janyce Franc, Raffaele Flaminio, Massimo Galimberti Laboratoire des Matériaux Avancés-LYON Simon Chelkowski, Andreas Freise University of Birmingham Stefan Hild University of Glasgow 2nd ET General Meeting-ERICE 15th October 2009 Janyce Franc-ET meeting-Erice

Janyce Franc-ET meeting-Erice Contents Introduction Motivations Objectives Laguerre-Gauss advantages Simulations References and Parameters Influence of LG mode on Brownian and TE Noises LG modes and different substrates LG modes and different mirror sizes Conclusion and future work Janyce Franc-ET meeting-Erice

Thermal noise in 3rd generation of GWD All these thermal noise sources are at least at some frequencies above the ET target The ideas to reduce thermal noise : Arm lengths New coating materials Cooling mirror @ cryogenic T° Change beam mode and beam size Janyce Franc-ET meeting-Erice

Motivation for using LG modes Advantages : Best power distribution on the mirror surface Lower Thermal Noise Lower Thermal Lensing The idea is to prove the efficiency of the combination of cryogenic temperature and the use of Laguerre-Gauss modes to decrease the thermal noise for future GW detector. Janyce Franc-ET meeting-Erice

Introduction to simulations Unless otherwise specified Reference : S. Hild et al. arXiv:0906.2655v2 [gr-qc] Coatings Standard : SiO2-Ta2O5 (HL)19HLL : Transmission 4 ppm Substrate Silicon Temperature 10K Mirror dimension 2 cases considered : Infinite mirror Finite mirror : Ø : 62 cm, h : 30 cm Beam dimensions Ratio insuring 1 ppm diffraction losses versus order of the LG mode LG55 : w = a/5.1 = 6.1 cm LG33 : w = a/4.3 = 7.2 cm LG00 : w=a/2.6 = 11.9 cm Janyce Franc-ET meeting-Erice

Janyce Franc-ET meeting-Erice Parameters values @ 10K COATING SUBSTRATE L 0.5 10-4 H 2 10-4 L (K-1) -0.25 10-6 H (K-1) 3.6 10-6 σL 0.159 σH 0.23 L (W.m-1.K-1) 0.13 H (W.m-1.K-1) 0.4 CL (J.K-1.Kg-1) 4 CH (J.K-1.Kg-1) 3.17 L (Kg.m-3) 2200 H (Kg.m-3) 6850 nL 1.44876 nH 2.06 YL (Pa) 60 10-9 YH (Pa) 140 10-9 s (K-1) 4.85 10-10 σs 0.2205 s (W.m-1.K-1) 2325 Cs (J.K-1.Kg-1) 2.76 10-1 s (Kg.m-3) 2330 s 0.5 10-9 Ys (Pa) 162.4 10-9 L : Low index material H : High index material Janyce Franc-ET meeting-Erice

References for formula For Infinite Mirrors with Gaussian Beam: 1. M. L. Gorodetsky Phys. Lett. A 372 (2008) 6813-6822 Summary of all thermal noise formula 2. Cerdonio et al. Phys. Review D, 63, 082003 Description of substrate TE Noise without adiabatic assumption 3. Braginsky, Gorodetsky, Vyatchanin arXiv:cond.mat/9912139v1 1999 Helpful to determine substrate TE Noise without adiabatic assumption applicable to higher LG modes For Finite Mirrors with LG modes: 4. B. Mours et al CQG 23 (2006), J.-Y.Vinet : Living Rev. Relativity 12,  (2009) Provides all formula for finite/infinite mirrors and for gaussian and LG beams 5. V.B. Braginsky, S.P. Vyatchanin, physics letter A 312 (2003) 244-255 Gives details of calculation for Coating TE Noise. Noises sources INFINITE MIRRORS FINITE MIRRORS Brownian Coating 4 Brownian Substrate 4 & 1 Thermoelastic Coating 1 & 4 (in progress) 1 & 4 & 5 (in progress) Thermoelastic Substrate 4 & 2 4 & 2 & 3 Janyce Franc-ET meeting-Erice

Coating Brownian Noise Conclusions on Coat. Brownian Noise : -No difference between finite and infinite mirrors -LG33 and LG55 give the same results LG0,0/LG3,3 For finite mirror 1.71 For infinite mirror 1.61 NB: ‘Finite mirror’ is 62 cm diameter mirror Janyce Franc-ET meeting-Erice

Substrate Brownian Noise Conclusions on Sub. Brownian Noise : - No difference between finite and infinite mirrors for Gaussian Beam - TN decreases in finite mirror for LG33 and LG55 - A small advantage for LG55 compare to LG33 LG0,0/LG3,3 For finite mirror 1.97 For infinite mirror 1.39 Janyce Franc-ET meeting-Erice

Coating Thermoelastic Noise Work in progress and in discussion with Jean-Yves Vinet Some problems have been identified in comparing formula from different references Janyce Franc-ET meeting-Erice

Substrate Thermoelastic Noise Conclusions on Sub. TE Noise : - No difference between finite and infinite mirror - Advantage for LG33 - Calculation for LG55 is in progress LG0,0/LG3,3 For finite mirror 1.13 to 1.4 For infinite mirror Janyce Franc-ET meeting-Erice

Substrates Comparison Study of two limiting Noises : Coating and Substrate Brownian Noise Coating Brownian Noise Substrate Brownian Noise Finite Mirror Ø=62 cm h=30cm COATING BROWNIAN NOISE ADVANTAGE SAPPHIRE SUBSTRATE BROWNIAN NOISE ADVANTAGE SILICON Janyce Franc-ET meeting-Erice

Total Thermal noise in Interferometer Mirror sizes effects : Diameter dependency For 1 ppm diff. losses Ø=35 cm w=6.7 cm Ø=45 cm w=8.7 cm Ø=62 cm w=11.9 cm Silicon substrate Arm = 10 km T=10K HORS SUJET? BETTER RESULT FOR Ø=45cm with LG33 than Ø=62cm with LG00 Janyce Franc-ET meeting-Erice

Total Thermal Noise TARGET Thermal Noise for 2nd generation GWD Interferometer arms : 3 km Temperature : 300K Large beams : 6.7 cm (gaussian beam) Thermal Noise for 3rd generation GWD Long interferometer arms : 10 km Temperature : 10K 2 cases : Ø=62 cm LG00 & Ø= 45 cm LG33 Low T° + High Mirror Size + LG33 = Thermal noise Target confirmed Janyce Franc-ET meeting-Erice

Conclusion and future work - Impact of different thermal noises depends on the considered LG modes but the main results does not change: coating Brownian noise remains the limit - LG33 mode appears as a good solution in order to decrease the total thermal noise (thermal noise reduced by 1.71 for LG33 compared to LG00). - A study of LG55 does not demonstrate a better result than LG33. - Writing up of an ET note in progress - A proposition of ET design, using large dimension mirror and LG33 mode, gives good sensitivity: Stefan Hild et al. arXiv: 0906.2655v2 [gr-qc] Janyce Franc-ET meeting-Erice