INFERENSIA KORELASI DAN REGRESI LINIER SEDERHANA Pertemuan 12

Slides:



Advertisements
Similar presentations
Chapter 9: Simple Regression Continued
Advertisements

Chapter 12 Simple Linear Regression
Econ 3790: Business and Economic Statistics
Pendugaan Parameter Nilai Tengah Pertemuan 13 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Analisis Varians Dwi Arah Pertemuan 22 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Regresi Linear Sederhana Pertemuan 01 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Pengujian Parameter Regresi Ganda Pertemuan 22 Matakuliah: L0104/Statistika Psikologi Tahun: 2008.
Chapter 14, part D Statistical Significance. IV. Model Assumptions The error term is a normally distributed random variable and The variance of  is constant.
Pengujian Hipotesis Nilai Tengah Pertemuan 15 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Uji Kelinearan dan Keberartian Regresi Pertemuan 02 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Regresi dan Korelasi Linear Pertemuan 19
Pengujian Parameter Regresi Pertemuan 26 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 12 Simple Linear Regression
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Classical Regression III
Regresi dan Analisis Varians Pertemuan 21 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Korelasi Ganda Dan Penambahan Peubah Pertemuan 13 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Regresi dan Rancangan Faktorial Pertemuan 23 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Chapter 12b Testing for significance—the t-test Developing confidence intervals for estimates of β 1. Testing for significance—the f-test Using Excel’s.
1 Pertemuan 13 Uji Koefisien Korelasi dan Regresi Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
Pengujian Parameter Koefisien Korelasi Pertemuan 04 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Pengujian Hipotesis Proporsi dan Beda Proporsi Pertemuan 21 Matakuliah: I0134/Metode Statistika Tahun: 2007.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 10 Analisis Ragam (Varians) - 1 Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Korelasi dalam Regresi Linear Sederhana Pertemuan 03 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Korelasi dan Regresi Linear Sederhana Pertemuan 25
1 Pertemuan 13 Regresi Linear dan Korelasi Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide Simple Linear Regression Part A n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 11 Inferences About Population Variances n Inference about a Population Variance n.
Econ 3790: Business and Economics Statistics
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
QMS 6351 Statistics and Research Methods Regression Analysis: Testing for Significance Chapter 14 ( ) Chapter 15 (15.5) Prof. Vera Adamchik.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 15 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple.
1 1 Slide Simple Linear Regression Coefficient of Determination Chapter 14 BA 303 – Spring 2011.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
1 Chapter 12 Simple Linear Regression. 2 Chapter Outline  Simple Linear Regression Model  Least Squares Method  Coefficient of Determination  Model.
Statistics for Business and Economics 8 th Edition Chapter 11 Simple Regression Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Ch.
1 1 Slide Simple Linear Regression Estimation and Residuals Chapter 14 BA 303 – Spring 2011.
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Pendugaan Parameter Varians dan Rasio Varians Pertemuan 18 Matakuliah: I0134/Metode Statistika Tahun: 2007.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
Chapter 12 Simple Linear Regression n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n Testing.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
1 Pertemuan 22 Regresi dan Korelasi Linier Sederhana-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 1 Slide © 2011 Cengage Learning Assumptions About the Error Term  1. The error  is a random variable with mean of zero. 2. The variance of , denoted.
INTRODUCTION TO MULTIPLE REGRESSION MULTIPLE REGRESSION MODEL 11.2 MULTIPLE COEFFICIENT OF DETERMINATION 11.3 MODEL ASSUMPTIONS 11.4 TEST OF SIGNIFICANCE.
Rancangan Acak Lengkap ( Analisis Varians Klasifikasi Satu Arah) Pertemuan 16 Matakuliah: I0184 – Teori Statistika II Tahun: 2009.
PENGUJIAN HIPOTESIS 1 Pertemuan 9
METODE PERAMALAN Pertemuan 16
Lecture 11: Simple Linear Regression
More Multiple Regression
Pertemuan 22 Analisis Varians Untuk Regresi
Pengujian Parameter Regresi dan Korelasi Pertemuan 20
Pertemuan 17 Pengujian Hipotesis
Statistics for Business and Economics (13e)
Quantitative Methods Simple Regression.
Slides by JOHN LOUCKS St. Edward’s University.
Chapter 11 Inferences About Population Variances
More Multiple Regression
More Multiple Regression
Pemeriksaan Sisa dan Data Berpengaruh Pertemuan 17
Essentials of Statistics for Business and Economics (8e)
St. Edward’s University
Presentation transcript:

INFERENSIA KORELASI DAN REGRESI LINIER SEDERHANA Pertemuan 12 Matakuliah : I0272 - STATISTIK PROBABILITAS Tahun : 2009 INFERENSIA KORELASI DAN REGRESI LINIER SEDERHANA Pertemuan 12

Materi Pengujian koefisien korelasi Pengujian parameter regresi linier sederhana Koefisien determinasi dan peramalan Bina Nusantara University

Persamaan Regresi Persamaan matematika yang memungkinkan kita meramalkan nilai-nilai peubah tak bebas dari nilai-nilai satu atau lebih peubah bebas disebut Persamaan Regresi Persamaan Regresi Sederhana: Bina Nusantara University

Testing for Significance To test for a significant regression relationship, we must conduct a hypothesis test to determine whether the value of b1 is zero. Two tests are commonly used t Test F Test Both tests require an estimate of s 2, the variance of e in the regression model. Bina Nusantara University 5 5

Testing for Significance An Estimate of s 2 The mean square error (MSE) provides the estimate of s 2, and the notation s2 is also used. s2 = MSE = SSE/(n-2) where: Bina Nusantara University 6 6

Testing for Significance An Estimate of s To estimate s we take the square root of s 2. The resulting s is called the standard error of the estimate. Bina Nusantara University 7 7

Testing for Significance: t Test Hypotheses H0: 1 = 0 Ha: 1 = 0 Test Statistic Rejection Rule Reject H0 if t < -tor t > t where t is based on a t distribution with n - 2 degrees of freedom. Bina Nusantara University 8 8

Contoh Soal: Reed Auto Sales t Test Hypotheses H0: 1 = 0 Ha: 1 = 0 Rejection Rule For  = .05 and d.f. = 3, t.025 = 3.182 Reject H0 if t > 3.182 Test Statistics t = 5/1.08 = 4.63 Conclusions Reject H0 Bina Nusantara University 9 9

Confidence Interval for 1 We can use a 95% confidence interval for 1 to test the hypotheses just used in the t test. H0 is rejected if the hypothesized value of 1 is not included in the confidence interval for 1. Bina Nusantara University 10 10

Confidence Interval for 1 The form of a confidence interval for 1 is: where b1 is the point estimate is the margin of error is the t value providing an area of a/2 in the upper tail of a t distribution with n - 2 degrees of freedom Bina Nusantara University 11 11

Contoh Soal: Reed Auto Sales Rejection Rule Reject H0 if 0 is not included in the confidence interval for 1. 95% Confidence Interval for 1 = 5 +- 3.182(1.08) = 5 +- 3.44 / or 1.56 to 8.44/ Conclusion Reject H0 Bina Nusantara University 12 12

Testing for Significance: F Test Hypotheses H0: 1 = 0 Ha: 1 = 0 Test Statistic F = MSR/MSE Rejection Rule Reject H0 if F > F where F is based on an F distribution with 1 d.f. in the numerator and n - 2 d.f. in the denominator. Bina Nusantara University 13 13

Example: Reed Auto Sales F Test Hypotheses H0: 1 = 0 Ha: 1 = 0 Rejection Rule For  = .05 and d.f. = 1, 3: F.05 = 10.13 Reject H0 if F > 10.13. Test Statistic F = MSR/MSE = 100/4.667 = 21.43 Conclusion We can reject H0. Bina Nusantara University 14 14

Some Cautions about the Interpretation of Significance Tests Rejecting H0: b1 = 0 and concluding that the relationship between x and y is significant does not enable us to conclude that a cause-and-effect relationship is present between x and y. Just because we are able to reject H0: b1 = 0 and demonstrate statistical significance does not enable us to conclude that there is a linear relationship between x and y. Bina Nusantara University 15 15

Using the Estimated Regression Equation for Estimation and Prediction Confidence Interval Estimate of E(yp) Prediction Interval Estimate of yp yp + t/2 sind where the confidence coefficient is 1 -  and t/2 is based on a t distribution with n - 2 d.f. Bina Nusantara University 16 16

Contoh Soal: Reed Auto Sales Point Estimation If 3 TV ads are run prior to a sale, we expect the mean number of cars sold to be: y = 10 + 5(3) = 25 cars Confidence Interval for E(yp) 95% confidence interval estimate of the mean number of cars sold when 3 TV ads are run is: 25 + 4.61 = 20.39 to 29.61 cars Prediction Interval for yp 95% prediction interval estimate of the number of cars sold in one particular week when 3 TV ads are run is: 25 + 8.28 = 16.72 to 33.28 cars ^ Bina Nusantara University 17