Some Irradiation Results from a Chip in UMC018 Technology

Slides:



Advertisements
Similar presentations
Kailua-Kona, Marcel Trimpl, Bonn University Readout Concept for Future Pixel Detectors based on Current Mode Signal Processing Marcel Trimpl.
Advertisements

SAAB SPACE 1 The M2 ASIC A mixed analogue/digital ASIC for acquisition and control in data handling systems Olle Martinsson AMICSA, October 2-3, 2006.
PH4705/ET4305: A/D: Analogue to Digital Conversion
Final Year Project A CMOS imager with compact digital pixel sensor (BA1-08) Supervisor: Dr. Amine Bermak Group Members: Chang Kwok Hung
Readout of DC coupled double sided sensors with CBMXYTER: Some first thoughts Peter Fischer, Heidelberg University.
Electronics for PS and LHC transformers Grzegorz Kasprowicz Supervisor: David Belohrad AB-BDI-PI Technical student report.
DEPFET Electronics Ivan Peric, Mannheim University.
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
Development of DC-DC converter ASICs S.Michelis 1,3, B.Allongue 1, G.Blanchot 1, F.Faccio 1, C.Fuentes 1,2, S.Orlandi 1, S.Saggini 4 1 CERN – PH-ESE 2.
September 8-14, th Workshop on Electronics for LHC1 Channel Control ASIC for the CMS Hadron Calorimeter Front End Readout Module Ray Yarema, Alan.
Design studies of a low power serial data link for a possible upgrade of the CMS pixel detector Beat Meier, Paul Scherrer Institut PSI TWEPP 2008.
Radiation Hardness Test Chip Matthias Harter, Peter Fischer Uni Mannheim.
Progress on STS CSA chip development E. Atkin Department of Electronics, MEPhI A.Voronin SINP, MSU.
Development of an ASIC for reading out CCDS at the vertex detector of the International Linear Collider Presenter: Peter Murray ASIC Design Group Science.
Summary of the FEE Session Christian J. Schmidt JINR, Dubna, Oct. 17 th 2008.
Leo Greiner PIXEL Hardware meeting HFT PIXEL detector LVDS Data Path Testing.
Some Irradiation Results from a Chip in UMC018 Technology Peter Fischer for Christian Kreidl Heidelberg University P. Fischer, ziti, Heidelberg.
1 07/10/07 Forward Vertex Detector Technical Design – Electronics DAQ Readout electronics split into two parts – Near the detector (ROC) – Compresses and.
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
LHCb Vertex Detector and Beetle Chip
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
Terra-Pixel APS for CALICE Progress meeting 10 th Nov 2005 Jamie Crooks, Microelectronics/RAL.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
BUILDING BLOCKS designed at IPHC in TOWER JAZZ CMOS Image Sensor 0.18 µm process Isabelle Valin on behalf of IPHC-PICSEL group.
Data Handling Processor v0.1 Preliminary Test Results - August 2010 Tomasz Hemperek.
ASIC Review DCD. ASIC Review DCD is implemented in UMC 0.18 um CMOS technology 3.2mm x 5mm DCD-B uses bump bonding on the UMC technology.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
Design Choices for SuperBelle P. Fischer, I. Peric, Ch. Kreidl, J. Kinzel Heidelberg University 1Design Choices for SuperBelle.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford for LCFI collaboration LCWS2008, 17 November 2008 Column Parallel CCD and Raw Charge Storage.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
High Speed Properties of Digital Gates, Copyright F. Canavero, R. Fantino Licensed to HDT - High Design Technology
End OF Column Circuits – Design Review
Status of DHP prototypes
EKT124 Digital Electronics 1 Introduction to Digital Electronics
Ivan Peric, Christian Kreidl, Peter Fischer University of Heidelberg
A 12-bit low-power ADC for SKIROC
THE CMOS INVERTER.
Pixel front-end development
LHC1 & COOP September 1995 Report
Milano Activities: an update Mauro Citterio On behalf of INFN Milano
Data Handling Processor v0.1 First Test Results
DCD – Measurements and Plans
Jan Soldat, Heidelberg University for the DSSC ASIC design groups
Analog Readout Chips – the Status
Readout electronics for aMini-matrix DEPFET detectors
Ivan Perić University of Heidelberg Germany
R&D activity dedicated to the VFE of the Si-W Ecal
The Silicon Drift Detector of the ALICE Experiment
Hugo França-Santos - CERN
First Testbeam results
Hans Krüger, University of Bonn
Test Slab Status CALICE ECAL test slab: what is it all about?
Development of the Data Handling Processor DHP
Reading: Hambley Ch. 7; Rabaey et al. Sec. 5.2
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
1 Gbit/s Serial Link 1 Gbit/s Data Link Using Multi Level Signalling
BESIII EMC electronics
Interfacing Data Converters with FPGAs
BOC1 Run Thru: Agenda 14h30 Start CB Local Meeting 16h00 Break for Tea
Digital Fundamentals Floyd Chapter 1 Tenth Edition
A new family of pixel detectors for high frame rate X-ray applications Roberto Dinapoli†, Anna Bergamaschi, Beat Henrich, Roland Horisberger, Ian Johnson,
R&D of CMOS pixel Shandong University
Presentation transcript:

Some Irradiation Results from a Chip in UMC018 Technology Peter Fischer for Christian Kreidl Heidelberg University P. Fischer, ziti, Heidelberg

Summary UMC018 Chip was irradiated with X-rays to 7.5Mrad No degradation after annealing Strange effects around 1.2Mrad Work done in the frame of the DEPFET project Measurements by Christian Kreidl Chip by Ivan Peric P. Fischer, ziti, Heidelberg

current memory cells to subtract pedestal using current memory cells The Chip DCD1 = DEPFET Current Digitizer Readout Chip for DEPFET Sensor columns DEPFET Sensor goes here… DCD1 Chip current memory cells to subtract pedestal 8 bit ADCs using current memory cells P. Fischer, ziti, Heidelberg

More Details... P. Fischer, ziti, Heidelberg Test Injection current Regulated Cascode Sampling Current Subtract 2 ADCs ADC Output Logic Generate ADC + memory cell control signals ADC result calculation, MUX per pixel 3 x 6 lines ADC Steering Signals Serializer Sample Monitoring Pad Clock Divider 600MHz sync for FPGA, Switcher P. Fischer, ziti, Heidelberg

Chip Layout & Design UMC 0.18µm technology, 2 x MiniASIC size ADC in radhard layout (enclosed NMOS, guard rings) Digital part without any precautions 72 inputs P. Fischer, ziti, Heidelberg

Pixel Layout Size x: 180µm Size y: 110µm regulated cascode two 8 bit algorithmic current mode ADCs working interleaved digital stuff (conservative layout) bump pad with 60µm opening test injection P. Fischer, ziti, Heidelberg

Chip Test Setup Chip glued & bonded to PCB – no cover Readout via USB P. Fischer, ziti, Heidelberg

Irradiation Facility in Karlsruhe 60 keV X-Ray tube at Institut für Nuclear Physics, Karlsruhe 100-250 krad/h (depending on distance), calibrated setup Thanks to Dr. Simonis, Mr. Dierlamm and Mr. Ritter for help! P. Fischer, ziti, Heidelberg

Irradiation Dose: DCD Operation Mode Measurements (while tube is on!): 31h @99.5 krad/h (d=180mm) = 3.1 Mrad 18h @241 krad/h (d=100mm) = 4.4 Mrad Total = 7.5 Mrad DCD Operation Mode clock running permanently control registers loaded every 30s with default values (precaution against SEU) Measurements (while tube is on!): current consumption on VDD (= analog + digital) on selected pixels: - Current memory cell operating range - ADC characteristics - Test injection current value P. Fischer, ziti, Heidelberg

Current consumption Total supply current (analog + digital) Current rises until 1.2Mrad, then settles to pre-rad value 1.2Mrad = pre-rad Probably bit flip In Bias DACs P. Fischer, ziti, Heidelberg

Current Memory Cells Cell keeps input voltage constant within ± 10µA P. Fischer, ziti, Heidelberg

ADC Characteristic (ADC value vs. Injection DAC) Test current injected via ON-CHIP injection DAC SEUs during measurement (more at 1.2Mrad !) most effects @<1.2Mrad, some ADCs BROKEN after 7Mrad and 6 days annealing: back to pre-rad behavior Pixel 59 Pixel 71 BROKEN @ 1.2Mrad 0 Mrad = after anneal. 7 Mrad Many SEUs P. Fischer, ziti, Heidelberg

Test Injection Current vs. DAC value Test injection current is ok (not dead). Some variation. P. Fischer, ziti, Heidelberg

ADC Histograms Plot deviation from straight line 45nA (@0)  70nA (@1.2-7 Mrad)  44nA (7 day anneal) P. Fischer, ziti, Heidelberg

ADC noise map All ADCs back to initial values after anneal Readout problems due to setup Readout problems due to setup P. Fischer, ziti, Heidelberg

Summary No degradation after 7Mrad of 60keV X-rays Strange effects at 1.2 Mrad (power higher, ADC dead) P. Fischer, ziti, Heidelberg

Thank you! P. Fischer, ziti, Heidelberg

Bump Bonding Status in HD Peter Fischer, ziti, Uni Heidelberg for Christian Kreidl P. Fischer, ziti, Heidelberg

Reminder We do gold stud bumping: Key parameters: Advantages: Create a gold sphere on bonder Place ball on chip, Thermocompress, rip off wire Place all bumps Flip & press & heat (~50g / bump) Can put bumps on both sides to reduce forces Can put isotropic glue with conducting particles Key parameters: Diameter of balls ~ 45µm Min. bond pad size ~ 60µm Min pitch ~ 100µm Advantages: single chip (prototype) process, in house, cheap Drawbacks: sequential, limited # of pads, large force, possible destruction of electronics under pad, need hard substrate, no rework P. Fischer, ziti, Heidelberg

Tests with Dummy Chips Aluminum on Silicon structures Substrate and ‘chip’ Trace pattern to check contact & shorts SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

Chip with Bumps P. Fischer, ziti, Heidelberg

Flipped Assemblies 80g/bump: all bumps connected, no shorts 20g/bump: 4 of 6 snakes connected, chip fell off SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

Large Size Module Mechanical demonstrator of ILC vertex detector module no electrical tests check how to handle a large silicon device check how low pitch flipping works 16 DCD (dummy) chips 36 Switcher (dummy) chips 11,9 cm x 1,6 cm No electrical test possibilities 8 ‘DCD’ chips 8 ‘DCD’ chips 2 x 18 ‘Switcher’ chips P. Fischer, ziti, Heidelberg

Placing Chips Close to Each Other (side view) Switcher (dummy) chips 164 bumps each1 ,4mm x 5,8mm 60g/bump = 9,8kg/chip Edge of flip tool SuS@Uni-Heidelberg SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

ILC Mechanical Sample SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

Minimum gap 50µm gap 50µm gap P. Fischer, ziti, Heidelberg SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

Module End 224 bumps/chip, 1.35mm x 4.95mm, 13.4kg/chip 200µm gap SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

Full sample One module populated with 52 chips No failures ! SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg

Effort Bonding process: cleaning, mounting, aligning, bumping Switcher: 11min DCD: 13min Flipping process: pickup, aligning, thermocompression 9 min 2 days of work including learning Improvements: build better mounting device for single chip bumping (mechanical clamp) P. Fischer, ziti, Heidelberg

Thank you! P. Fischer, ziti, Heidelberg

ADC Design in Heidelberg Peter Fischer, ziti, Uni Heidelberg ADC Design: Ivan Peric P. Fischer, ziti, Heidelberg

Content Algorithmic / Pipeline ADC principles Voltage vs. Current Mode ADC in DEPFET readout chip Reminder: ADC of David Muthers (Kaiserslautern) Comparison of figures of Merit P. Fischer, ziti, Heidelberg

Algorithmic (Cyclic) ADC Idea: Compare signal to half scale  generate BIT If BIT = 1: subtract half scale Multiply result by two Restart over again Every cycle produces a new bit Very popular architecture Resolution limited by precision of Compare / Subtract / Multiply Comparator requirements are relaxed by two threshold per stage (and some error correction) P. Fischer, ziti, Heidelberg

ADC Stage + + - ADC DAC k Bit P. Fischer, ziti, Heidelberg

Bit Alignment + RSD Correction Pipeline ADC Shift value through many stages Can process one new value per cycle More hardware Faster Can scale cells for lower precision in later cells Stage 1 Stage 2 Stage m-1 Stage m Vin 2 2 2 2 Bit Alignment + RSD Correction P. Fischer, ziti, Heidelberg

Voltage vs. Current Signal can be voltage or current Voltage: Current Often natural quantity delivered by circuit Comparison simple Add / Subtract & duplication with switched capacitor circuits Large swings Needs linear capacitors Current May require U->I conversion Low swing operation Add / Subtract very simple Duplication with multiple current copy & add Can do with simple, small capacitors No obvious winner P. Fischer, ziti, Heidelberg

Standard Current Memory Cell Tracking phase: Diode connected transistor Sample on gate capacitance Drawbacks: Charge injection is signal dependent Low output resistance & current dependent Input potential current dependent Large storage cap (low leak) decreases speed Iin / Iout P. Fischer, ziti, Heidelberg

Pixel Layout Two 8 Bit ADCs: Current memory cells, Comparators, Reference sources. Optimized, rad hard layout ADC timing signals (can be shared) 110µm 2 x Output Logic (shift registers…) Very conservative layout Using standard cells P. Fischer, ziti, Heidelberg

ADC Characteristic 8 Bit ADC output vs. injection DAC value P. Fischer, ziti, Heidelberg

ADC Noise / INL Plot deviation from ideal value for various inputs Width mostly from noise in input stage P. Fischer, ziti, Heidelberg

Pipeline ADC (Design Study) P. Fischer, ziti, Heidelberg

Comparison: ADC from D. Muthers, Kaiserslautern Voltage mode Cyclic & Pipeline version Early version used in TRAP chip P. Fischer, ziti, Heidelberg

Comparison FoM = P / 2ENoB / f * 1012 (small is good) HD, I mode Cyclic HD, I mode Pipeline KL, V mode KL, V mode Pipeline Commercial IQ-Analog ENOBs ~ 8 (9) ~ 9 (design) ~ 9.2 @ fin=5MHz ~ 9.7 9 speed 6 MS/s 25 MS/s 10 MS/s 75 MS/s 80 MS/s Power 1 mW 4.5 mW 9.5 mW 30 mW 8 mW Layout area ~3.000 µm2 (rad hard) ~10.000 µm2 110.000 µm2 (non rad hard) > 200.000 µm2 210.000 µm2 (0.13µm) Additionally Shift register Delay registers ??? - FoM [pJ/conv] 0.65 0.35 1.6 0.48 0.2 FoM = P / 2ENoB / f * 1012 (small is good) ADC from HD are VERY small P. Fischer, ziti, Heidelberg

Thank you! P. Fischer, ziti, Heidelberg

Simple Serial Data Driver Peter Fischer, ziti, Uni Heidelberg P. Fischer, ziti, Heidelberg

Goal Study a serial driver suited to directly drive an FPGA Find out how Complex Large Power hungry it is. Later: study copper transmission: how long can we go ? How fast can we go ? For which type of cable ? for which power requirement ? P. Fischer, ziti, Heidelberg

Design choices Use (free) Aurora protocol from Xilinx No back channel No channel bonding Minimize protocol engine Use radiation hard library for a test P. Fischer, ziti, Heidelberg

Aurora – Protocol Physical layer interface – electrical levels, clock encoding, symbol coding Channel initialization and error handling Link layer: Beginning / End of data IDLE Clock compensation 8B/10B encoding Arbitrary data format, Data packets with arbitrary length 4 Phases: Initialization Synchronization of receiver clock (send some syncs) Data transmission Idle Must inject clock compensation characters from time to time P. Fischer, ziti, Heidelberg

Components FIFO: (data buffer) Control FSM 8b/10b Encoder Serializer LVDS-Driver P. Fischer, ziti, Heidelberg

Initialisation RESET TXRES_0 TXRES_1 P. Fischer, ziti, Heidelberg ln_cnt < N+2 TXRES_1 zur Validierung res_cnt < 3 P. Fischer, ziti, Heidelberg

Validation VAL/A/ VAL/R/ VAL/K/ CV_0 CV_1 P. Fischer, ziti, Heidelberg von Initialisierung idle_cnt = 32 idle_cnt < 32 idle_cnt = 32 VAL/K/ val_cnt = 60 val_cnt = 60 val_cnt = 60 CV_0 CV_1 IDLE / Daten P. Fischer, ziti, Heidelberg

Idle CC_1 IDLE/A/ IDLE/R/ IDLE/K/ P. Fischer, ziti, Heidelberg ev_cnt < 12 CC_1 ccc_cnt = 10000 ccc_cnt = 10000 IDLE/A/ idle_cnt = 32 IDLE/R/ ccc_cnt = 10000 von Daten / Valid. idle_cnt = 32 idle_cnt < 32 IDLE/K/ valid_data & even valid_data & even valid_data & even Daten P. Fischer, ziti, Heidelberg

Data Transfer CC_3 CC_4 SCP_0 SCP_1 DATA CC_2_0 CC_2_1 CC_5_1 CC_5_0 von IDLE / Val. valid_data !valid_data & !even DATA PADDING CC_2_0 CC_2_1 !valid_data & even !valid_data CC_5_1 CC_5_0 ECP_1 ECP_0 IDLE !valid_data valid_data Daten P. Fischer, ziti, Heidelberg

Serializer For simplicity: Realize in CMOS Use shift register with load Load generation most time critical Several circuits have been compared Minimal speed: 600 MHz Reached 1.9GHz with standard cells P. Fischer, ziti, Heidelberg

Test circuit on Xilinx Evaluation board Generate Aurora compatible parallel data stream Send to MGT serializer Loopback via SATA cable Receiver uses Aurora protocol FSM, 8b/10b P. Fischer, ziti, Heidelberg

Sample result: data transfer and Idle P. Fischer, ziti, Heidelberg

Synthesis with VST library First Using VST library P. Fischer, ziti, Heidelberg

Simplification Try designs with NO clock compensation characters P. Fischer, ziti, Heidelberg

Synthesis with Rad hard library P. Fischer, ziti, Heidelberg

Power estimation No LVDS driver (which will dominate!) Using VST Library Rad hard ~ x4 P. Fischer, ziti, Heidelberg

Place & Route ~200 x 200mm2 for rad had design P. Fischer, ziti, Heidelberg

Next steps Study realistic, fast LVDS driver Study cable properties & modelling First step: Simulated eye-diagram with Kaiserslautern driver + 10 cable, 24AWG (no pre-emphasis) P. Fischer, ziti, Heidelberg

Thank you! P. Fischer, ziti, Heidelberg