Some Irradiation Results from a Chip in UMC018 Technology Peter Fischer for Christian Kreidl Heidelberg University P. Fischer, ziti, Heidelberg
Summary UMC018 Chip was irradiated with X-rays to 7.5Mrad No degradation after annealing Strange effects around 1.2Mrad Work done in the frame of the DEPFET project Measurements by Christian Kreidl Chip by Ivan Peric P. Fischer, ziti, Heidelberg
current memory cells to subtract pedestal using current memory cells The Chip DCD1 = DEPFET Current Digitizer Readout Chip for DEPFET Sensor columns DEPFET Sensor goes here… DCD1 Chip current memory cells to subtract pedestal 8 bit ADCs using current memory cells P. Fischer, ziti, Heidelberg
More Details... P. Fischer, ziti, Heidelberg Test Injection current Regulated Cascode Sampling Current Subtract 2 ADCs ADC Output Logic Generate ADC + memory cell control signals ADC result calculation, MUX per pixel 3 x 6 lines ADC Steering Signals Serializer Sample Monitoring Pad Clock Divider 600MHz sync for FPGA, Switcher P. Fischer, ziti, Heidelberg
Chip Layout & Design UMC 0.18µm technology, 2 x MiniASIC size ADC in radhard layout (enclosed NMOS, guard rings) Digital part without any precautions 72 inputs P. Fischer, ziti, Heidelberg
Pixel Layout Size x: 180µm Size y: 110µm regulated cascode two 8 bit algorithmic current mode ADCs working interleaved digital stuff (conservative layout) bump pad with 60µm opening test injection P. Fischer, ziti, Heidelberg
Chip Test Setup Chip glued & bonded to PCB – no cover Readout via USB P. Fischer, ziti, Heidelberg
Irradiation Facility in Karlsruhe 60 keV X-Ray tube at Institut für Nuclear Physics, Karlsruhe 100-250 krad/h (depending on distance), calibrated setup Thanks to Dr. Simonis, Mr. Dierlamm and Mr. Ritter for help! P. Fischer, ziti, Heidelberg
Irradiation Dose: DCD Operation Mode Measurements (while tube is on!): 31h @99.5 krad/h (d=180mm) = 3.1 Mrad 18h @241 krad/h (d=100mm) = 4.4 Mrad Total = 7.5 Mrad DCD Operation Mode clock running permanently control registers loaded every 30s with default values (precaution against SEU) Measurements (while tube is on!): current consumption on VDD (= analog + digital) on selected pixels: - Current memory cell operating range - ADC characteristics - Test injection current value P. Fischer, ziti, Heidelberg
Current consumption Total supply current (analog + digital) Current rises until 1.2Mrad, then settles to pre-rad value 1.2Mrad = pre-rad Probably bit flip In Bias DACs P. Fischer, ziti, Heidelberg
Current Memory Cells Cell keeps input voltage constant within ± 10µA P. Fischer, ziti, Heidelberg
ADC Characteristic (ADC value vs. Injection DAC) Test current injected via ON-CHIP injection DAC SEUs during measurement (more at 1.2Mrad !) most effects @<1.2Mrad, some ADCs BROKEN after 7Mrad and 6 days annealing: back to pre-rad behavior Pixel 59 Pixel 71 BROKEN @ 1.2Mrad 0 Mrad = after anneal. 7 Mrad Many SEUs P. Fischer, ziti, Heidelberg
Test Injection Current vs. DAC value Test injection current is ok (not dead). Some variation. P. Fischer, ziti, Heidelberg
ADC Histograms Plot deviation from straight line 45nA (@0) 70nA (@1.2-7 Mrad) 44nA (7 day anneal) P. Fischer, ziti, Heidelberg
ADC noise map All ADCs back to initial values after anneal Readout problems due to setup Readout problems due to setup P. Fischer, ziti, Heidelberg
Summary No degradation after 7Mrad of 60keV X-rays Strange effects at 1.2 Mrad (power higher, ADC dead) P. Fischer, ziti, Heidelberg
Thank you! P. Fischer, ziti, Heidelberg
Bump Bonding Status in HD Peter Fischer, ziti, Uni Heidelberg for Christian Kreidl P. Fischer, ziti, Heidelberg
Reminder We do gold stud bumping: Key parameters: Advantages: Create a gold sphere on bonder Place ball on chip, Thermocompress, rip off wire Place all bumps Flip & press & heat (~50g / bump) Can put bumps on both sides to reduce forces Can put isotropic glue with conducting particles Key parameters: Diameter of balls ~ 45µm Min. bond pad size ~ 60µm Min pitch ~ 100µm Advantages: single chip (prototype) process, in house, cheap Drawbacks: sequential, limited # of pads, large force, possible destruction of electronics under pad, need hard substrate, no rework P. Fischer, ziti, Heidelberg
Tests with Dummy Chips Aluminum on Silicon structures Substrate and ‘chip’ Trace pattern to check contact & shorts SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg
Chip with Bumps P. Fischer, ziti, Heidelberg
Flipped Assemblies 80g/bump: all bumps connected, no shorts 20g/bump: 4 of 6 snakes connected, chip fell off SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg
Large Size Module Mechanical demonstrator of ILC vertex detector module no electrical tests check how to handle a large silicon device check how low pitch flipping works 16 DCD (dummy) chips 36 Switcher (dummy) chips 11,9 cm x 1,6 cm No electrical test possibilities 8 ‘DCD’ chips 8 ‘DCD’ chips 2 x 18 ‘Switcher’ chips P. Fischer, ziti, Heidelberg
Placing Chips Close to Each Other (side view) Switcher (dummy) chips 164 bumps each1 ,4mm x 5,8mm 60g/bump = 9,8kg/chip Edge of flip tool SuS@Uni-Heidelberg SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg
ILC Mechanical Sample SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg
Minimum gap 50µm gap 50µm gap P. Fischer, ziti, Heidelberg SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg
Module End 224 bumps/chip, 1.35mm x 4.95mm, 13.4kg/chip 200µm gap SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg
Full sample One module populated with 52 chips No failures ! SuS@Uni-Heidelberg P. Fischer, ziti, Heidelberg
Effort Bonding process: cleaning, mounting, aligning, bumping Switcher: 11min DCD: 13min Flipping process: pickup, aligning, thermocompression 9 min 2 days of work including learning Improvements: build better mounting device for single chip bumping (mechanical clamp) P. Fischer, ziti, Heidelberg
Thank you! P. Fischer, ziti, Heidelberg
ADC Design in Heidelberg Peter Fischer, ziti, Uni Heidelberg ADC Design: Ivan Peric P. Fischer, ziti, Heidelberg
Content Algorithmic / Pipeline ADC principles Voltage vs. Current Mode ADC in DEPFET readout chip Reminder: ADC of David Muthers (Kaiserslautern) Comparison of figures of Merit P. Fischer, ziti, Heidelberg
Algorithmic (Cyclic) ADC Idea: Compare signal to half scale generate BIT If BIT = 1: subtract half scale Multiply result by two Restart over again Every cycle produces a new bit Very popular architecture Resolution limited by precision of Compare / Subtract / Multiply Comparator requirements are relaxed by two threshold per stage (and some error correction) P. Fischer, ziti, Heidelberg
ADC Stage + + - ADC DAC k Bit P. Fischer, ziti, Heidelberg
Bit Alignment + RSD Correction Pipeline ADC Shift value through many stages Can process one new value per cycle More hardware Faster Can scale cells for lower precision in later cells Stage 1 Stage 2 Stage m-1 Stage m Vin 2 2 2 2 Bit Alignment + RSD Correction P. Fischer, ziti, Heidelberg
Voltage vs. Current Signal can be voltage or current Voltage: Current Often natural quantity delivered by circuit Comparison simple Add / Subtract & duplication with switched capacitor circuits Large swings Needs linear capacitors Current May require U->I conversion Low swing operation Add / Subtract very simple Duplication with multiple current copy & add Can do with simple, small capacitors No obvious winner P. Fischer, ziti, Heidelberg
Standard Current Memory Cell Tracking phase: Diode connected transistor Sample on gate capacitance Drawbacks: Charge injection is signal dependent Low output resistance & current dependent Input potential current dependent Large storage cap (low leak) decreases speed Iin / Iout P. Fischer, ziti, Heidelberg
Pixel Layout Two 8 Bit ADCs: Current memory cells, Comparators, Reference sources. Optimized, rad hard layout ADC timing signals (can be shared) 110µm 2 x Output Logic (shift registers…) Very conservative layout Using standard cells P. Fischer, ziti, Heidelberg
ADC Characteristic 8 Bit ADC output vs. injection DAC value P. Fischer, ziti, Heidelberg
ADC Noise / INL Plot deviation from ideal value for various inputs Width mostly from noise in input stage P. Fischer, ziti, Heidelberg
Pipeline ADC (Design Study) P. Fischer, ziti, Heidelberg
Comparison: ADC from D. Muthers, Kaiserslautern Voltage mode Cyclic & Pipeline version Early version used in TRAP chip P. Fischer, ziti, Heidelberg
Comparison FoM = P / 2ENoB / f * 1012 (small is good) HD, I mode Cyclic HD, I mode Pipeline KL, V mode KL, V mode Pipeline Commercial IQ-Analog ENOBs ~ 8 (9) ~ 9 (design) ~ 9.2 @ fin=5MHz ~ 9.7 9 speed 6 MS/s 25 MS/s 10 MS/s 75 MS/s 80 MS/s Power 1 mW 4.5 mW 9.5 mW 30 mW 8 mW Layout area ~3.000 µm2 (rad hard) ~10.000 µm2 110.000 µm2 (non rad hard) > 200.000 µm2 210.000 µm2 (0.13µm) Additionally Shift register Delay registers ??? - FoM [pJ/conv] 0.65 0.35 1.6 0.48 0.2 FoM = P / 2ENoB / f * 1012 (small is good) ADC from HD are VERY small P. Fischer, ziti, Heidelberg
Thank you! P. Fischer, ziti, Heidelberg
Simple Serial Data Driver Peter Fischer, ziti, Uni Heidelberg P. Fischer, ziti, Heidelberg
Goal Study a serial driver suited to directly drive an FPGA Find out how Complex Large Power hungry it is. Later: study copper transmission: how long can we go ? How fast can we go ? For which type of cable ? for which power requirement ? P. Fischer, ziti, Heidelberg
Design choices Use (free) Aurora protocol from Xilinx No back channel No channel bonding Minimize protocol engine Use radiation hard library for a test P. Fischer, ziti, Heidelberg
Aurora – Protocol Physical layer interface – electrical levels, clock encoding, symbol coding Channel initialization and error handling Link layer: Beginning / End of data IDLE Clock compensation 8B/10B encoding Arbitrary data format, Data packets with arbitrary length 4 Phases: Initialization Synchronization of receiver clock (send some syncs) Data transmission Idle Must inject clock compensation characters from time to time P. Fischer, ziti, Heidelberg
Components FIFO: (data buffer) Control FSM 8b/10b Encoder Serializer LVDS-Driver P. Fischer, ziti, Heidelberg
Initialisation RESET TXRES_0 TXRES_1 P. Fischer, ziti, Heidelberg ln_cnt < N+2 TXRES_1 zur Validierung res_cnt < 3 P. Fischer, ziti, Heidelberg
Validation VAL/A/ VAL/R/ VAL/K/ CV_0 CV_1 P. Fischer, ziti, Heidelberg von Initialisierung idle_cnt = 32 idle_cnt < 32 idle_cnt = 32 VAL/K/ val_cnt = 60 val_cnt = 60 val_cnt = 60 CV_0 CV_1 IDLE / Daten P. Fischer, ziti, Heidelberg
Idle CC_1 IDLE/A/ IDLE/R/ IDLE/K/ P. Fischer, ziti, Heidelberg ev_cnt < 12 CC_1 ccc_cnt = 10000 ccc_cnt = 10000 IDLE/A/ idle_cnt = 32 IDLE/R/ ccc_cnt = 10000 von Daten / Valid. idle_cnt = 32 idle_cnt < 32 IDLE/K/ valid_data & even valid_data & even valid_data & even Daten P. Fischer, ziti, Heidelberg
Data Transfer CC_3 CC_4 SCP_0 SCP_1 DATA CC_2_0 CC_2_1 CC_5_1 CC_5_0 von IDLE / Val. valid_data !valid_data & !even DATA PADDING CC_2_0 CC_2_1 !valid_data & even !valid_data CC_5_1 CC_5_0 ECP_1 ECP_0 IDLE !valid_data valid_data Daten P. Fischer, ziti, Heidelberg
Serializer For simplicity: Realize in CMOS Use shift register with load Load generation most time critical Several circuits have been compared Minimal speed: 600 MHz Reached 1.9GHz with standard cells P. Fischer, ziti, Heidelberg
Test circuit on Xilinx Evaluation board Generate Aurora compatible parallel data stream Send to MGT serializer Loopback via SATA cable Receiver uses Aurora protocol FSM, 8b/10b P. Fischer, ziti, Heidelberg
Sample result: data transfer and Idle P. Fischer, ziti, Heidelberg
Synthesis with VST library First Using VST library P. Fischer, ziti, Heidelberg
Simplification Try designs with NO clock compensation characters P. Fischer, ziti, Heidelberg
Synthesis with Rad hard library P. Fischer, ziti, Heidelberg
Power estimation No LVDS driver (which will dominate!) Using VST Library Rad hard ~ x4 P. Fischer, ziti, Heidelberg
Place & Route ~200 x 200mm2 for rad had design P. Fischer, ziti, Heidelberg
Next steps Study realistic, fast LVDS driver Study cable properties & modelling First step: Simulated eye-diagram with Kaiserslautern driver + 10 cable, 24AWG (no pre-emphasis) P. Fischer, ziti, Heidelberg
Thank you! P. Fischer, ziti, Heidelberg