EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011

Slides:



Advertisements
Similar presentations
L3 January 221 Semiconductor Device Modeling and Characterization EE5342, Lecture 3-Spring 2002 Professor Ronald L. Carter
Advertisements

EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2009 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
Lecture #6 OUTLINE Carrier scattering mechanisms Drift current
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
L 04 Sept 041 EE 5340 Semiconductor Device Theory Lecture 4 - Fall 2003 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 3 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011 Professor Ronald L. Carter
Lecture 4 OUTLINE Semiconductor Fundamentals (cont’d)
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter
L04 24Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 4-Spring 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 07 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 8 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
L4 January 271 Semiconductor Device Modeling and Characterization EE5342, Lecture 4-Spring 2005 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 4 – Spring 2011 Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 4 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 4 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 4 - Fall 2010
Lecture #5 OUTLINE Intrinsic Fermi level Determination of EF
Professor Ronald L. Carter
Lecture #6 OUTLINE Carrier scattering mechanisms Drift current
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 4 OUTLINE Semiconductor Fundamentals (cont’d)
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 07 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 03 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc

Review the Following R. L. Carter’s web page: www.uta.edu/ronc/ EE 5340 web page and syllabus. (Refresh all EE 5340 pages when downloading to assure the latest version.) All links at: www.uta.edu/ronc/5340/syllabus.htm University and College Ethics Policies www.uta.edu/studentaffairs/conduct/ Makeup lecture at noon Friday (1/28) in 108 Nedderman Hall. This will be available on the web. ©rlc L06-10Feb2011

First Assignment Send e-mail to ronc@uta.edu On the subject line, put “5340 e-mail” In the body of message include email address: ______________________ Your Name*: _______________________ Last four digits of your Student ID: _____ * Your name as it appears in the UTA Record - no more, no less ©rlc L06-10Feb2011

Second Assignment Submit a signed copy of the document posted at www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf ©rlc L06-10Feb2011

Schedule Changes Due to University Weather Closings Make-up class will be held Friday, February 11 at 12 noon in 108 Nedderman Hall. Additional changes will be announced as necessary. Syllabus and lecture dates postings have been updated. Project Assignment has been posted in the initial version. ©rlc L06-10Feb2011

Drift Current The drift current density (amp/cm2) is given by the point form of Ohm Law J = (nqmn+pqmp)(Exi+ Eyj+ Ezk), so J = (sn + sp)E = sE, where s = nqmn+pqmp defines the conductivity The net current is ©rlc L06-10Feb2011

Drift current resistance Given: a semiconductor resistor with length, l, and cross-section, A. What is the resistance? As stated previously, the conductivity, s = nqmn + pqmp So the resistivity, r = 1/s = 1/(nqmn + pqmp) ©rlc L06-10Feb2011

Drift current resistance (cont.) Consequently, since R = rl/A R = (nqmn + pqmp)-1(l/A) For n >> p, (an n-type extrinsic s/c) R = l/(nqmnA) For p >> n, (a p-type extrinsic s/c) R = l/(pqmpA) ©rlc L06-10Feb2011

Drift current resistance (cont.) Note: for an extrinsic semiconductor and multiple scattering mechanisms, since R = l/(nqmnA) or l/(pqmpA), and (mn or p total)-1 = S mi-1, then Rtotal = S Ri (series Rs) The individual scattering mechanisms are: Lattice, ionized impurity, etc. ©rlc L06-10Feb2011

Net intrinsic mobility Considering only lattice scattering ©rlc L06-10Feb2011

Lattice mobility The mlattice is the lattice scattering mobility due to thermal vibrations Simple theory gives mlattice ~ T-3/2 Experimentally mn,lattice ~ T-n where n = 2.42 for electrons and 2.2 for holes Consequently, the model equation is mlattice(T) = mlattice(300)(T/300)-n ©rlc L06-10Feb2011

Net extrinsic mobility Considering only lattice and impurity scattering ©rlc L06-10Feb2011

Net silicon extr resistivity (cont.) Since r = (nqmn + pqmp)-1, and mn > mp, (m = qt/m*) we have rp > rn Note that since 1.6(high conc.) < rp/rn < 3(low conc.), so 1.6(high conc.) < mn/mp < 3(low conc.) ©rlc L06-10Feb2011

Ionized impurity mobility function The mimpur is the scattering mobility due to ionized impurities Simple theory gives mimpur ~ T3/2/Nimpur Consequently, the model equation is mimpur(T) = mimpur(300)(T/300)3/2 ©rlc L06-10Feb2011

Figure 1.17 (p. 32 in M&K1) Low-field mobility in silicon as a function of temperature for electrons (a), and for holes (b). The solid lines represent the theoretical predictions for pure lattice scattering [5]. ©rlc L06-10Feb2011

Exp. m(T=300K) model for P, As and B in Si1 ©rlc L06-10Feb2011

Exp. mobility model function for Si1 Parameter As P B mmin 52.2 68.5 44.9 mmax 1417 1414 470.5 Nref 9.68e16 9.20e16 2.23e17 a 0.680 0.711 0.719 ©rlc L06-10Feb2011

Carrier mobility functions (cont.) The parameter mmax models 1/tlattice the thermal collision rate The parameters mmin, Nref and a model 1/timpur the impurity collision rate The function is approximately of the ideal theoretical form: 1/mtotal = 1/mthermal + 1/mimpurity ©rlc L06-10Feb2011

Carrier mobility functions (ex.) Let Nd = 1.78E17/cm3 of phosphorous, so mmin = 68.5, mmax = 1414, Nref = 9.20e16 and a = 0.711. Thus mn = 586 cm2/V-s Let Na = 5.62E17/cm3 of boron, so mmin = 44.9, mmax = 470.5, Nref = 9.68e16 and a = 0.680. Thus mp = 189 cm2/V-s ©rlc L06-10Feb2011

Net silicon (ex- trinsic) resistivity Since r = s-1 = (nqmn + pqmp)-1 The net conductivity can be obtained by using the model equation for the mobilities as functions of doping concentrations. The model function gives agreement with the measured s(Nimpur) ©rlc L06-10Feb2011

Figure 1.15 (p. 29) M&K Dopant density versus resistivity at 23°C (296 K) for silicon doped with phosphorus and with boron. The curves can be used with little error to represent conditions at 300 K. [W. R. Thurber, R. L. Mattis, and Y. M. Liu, National Bureau of Standards Special Publication 400–64, 42 (May 1981).] ©rlc L06-10Feb2011

Net silicon extr resistivity (cont.) Since r = (nqmn + pqmp)-1, and mn > mp, (m = qt/m*) we have rp > rn, for the same NI Note that since 1.6(high conc.) < rp/rn < 3(low conc.), so 1.6(high conc.) < mn/mp < 3(low conc.) ©rlc L06-10Feb2011

Net silicon (com- pensated) res. For an n-type (n >> p) compensated semiconductor, r = (nqmn)-1 But now n = N  Nd - Na, and the mobility must be considered to be determined by the total ionized impurity scattering Nd + Na  NI Consequently, a good estimate is r = (nqmn)-1 = [Nqmn(NI)]-1 ©rlc L06-10Feb2011

Figure 1.16 (p. 31 M&K) Electron and hole mobilities in silicon at 300 K as functions of the total dopant concentration. The values plotted are the results of curve fitting measurements from several sources. The mobility curves can be generated using Equation 1.2.10 with the following values of the parameters [3] (see table on next slide). ©rlc L06-10Feb2011

Summary The concept of mobility introduced as a response function to the electric field in establishing a drift current Resistivity and conductivity defined Model equation def for m(Nd,Na,T) Resistivity models developed for extrinsic and compensated materials ©rlc L06-10Feb2011

Equipartition theorem The thermodynamic energy per degree of freedom is kT/2 Consequently, ©rlc L06-10Feb2011

Carrier velocity saturation1 The mobility relationship v = mE is limited to “low” fields v < vth = (3kT/m*)1/2 defines “low” v = moE[1+(E/Ec)b]-1/b, mo = v1/Ec for Si parameter electrons holes v1 (cm/s) 1.53E9 T-0.87 1.62E8 T-0.52 Ec (V/cm) 1.01 T1.55 1.24 T1.68 b 2.57E-2 T0.66 0.46 T0.17 ©rlc L06-10Feb2011

Carrier velocity2 carrier velocity vs E for Si, Ge, and GaAs (after Sze2) ©rlc L06-10Feb2011

Carrier velocity saturation (cont.) At 300K, for electrons, mo = v1/Ec = 1.53E9(300)-0.87/1.01(300)1.55 = 1504 cm2/V-s, the low-field mobility The maximum velocity (300K) is vsat = moEc = v1 = 1.53E9 (300)-0.87 = 1.07E7 cm/s ©rlc L06-10Feb2011

References M&K and 1Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986. See Semiconductor Device Fundamen-tals, by Pierret, Addison-Wesley, 1996, for another treatment of the m model. 2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981. ©rlc L06-10Feb2011

References *Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989. **Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago. M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003. ©rlc L06-10Feb2011