Development of a low power

Slides:



Advertisements
Similar presentations
The ATLAS Pixel Detector
Advertisements

End of Column Circuits Sakari Tiuraniemi - CERN. EOC Architecture 45 9 Ref CLK 40 MHz DLL 32-bit TDC bank address RX 5 TDC bank address RX 5 TDC bank.
NxN pixel demonstrator. Time to Digital Converter (2) Tapped delay line –128 cells, 100ps Two hit registers –One per both leading and trailing edge 7.
E-link IP for FE ASICs VFAT3/GdSP ASIC design meeting 19/07/2011.
Chip Developments of the Bonn Group Hans Krüger, Bonn University -1-
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
1 A 16:1 serializer for data transmission at 5 Gbps Datao Gong 1, Suen Hou 2, Zhihua Liang 1, Chonghan Liu 1, Tiankuan Liu 1, Da-Shun Su 2, Ping-Kun Teng.
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P.
GOSSIPO-2 chip: a prototype of read-out pixel array featuring high resolution TDC-per-pixel architecture. Vladimir Gromov, Ruud Kluit, Harry van der Graaf.
VELO upgrade electronics – HYBRIDS Tony Smith University of Liverpool.
A multi-chip board for X-ray imaging in build-up technology Alessandro Fornaini, NIKHEF, Amsterdam 4 th International Workshop on Radiation Imaging Detectors.
Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch 1, Herve Grabas 3, Mary.
A Serializer ASIC for High Speed Data Transmission in Cryogenic and HiRel Environment Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group.
Switched capacitor DC-DC converter ASICs for the upgraded LHC trackers M. Bochenek 1,2, W. Dąbrowski 2, F. Faccio 1, S. Michelis 1 1. CERN, Conseil Européen.
Slide: 1International Conference on Electronics, Circuits, and Systems 2010 Department of Electrical and Computer Engineering University of New Mexico.
VELO upgrade Front-end ECS LHCb upgrade electronics meeting 12 April 2012 Martin van Beuzekom on behalf of the VELO upgrade group Some thoughts, nothing.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
Filip Tavernier Karolina Poltorak Sandro Bonacini Paulo Moreira
M. Lo Vetere 1,2, S. Minutoli 1, E. Robutti 1 1 I.N.F.N Genova, via Dodecaneso, GENOVA (Italy); 2 University of GENOVA (Italy) The TOTEM T1.
Design studies of a low power serial data link for a possible upgrade of the CMS pixel detector Beat Meier, Paul Scherrer Institut PSI TWEPP 2008.
Gossipo-3: a prototype of a Front-end Pixel Chip for Read-out of Micro-Pattern Gas Detectors. TWEPP-09, Paris, France. September 22, Christoph Brezina.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
VeloPix ASIC 7 November 2013 Xavi Llopart, Tuomas Poikela, Massimiliano De Gaspari, Ken Wyllie, Jan Buytaert, Michael Campbell, Vladimir Gromov, Vladimir.
LHCb Vertex Detector and Beetle Chip
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
1 The Link-On-Chip (LOC) Project at SMU 1.Overview. 2.Status 3.Current work on LOCs6. 4.Plan and summary Jingbo Ye Department of Physics SMU Dallas, Texas.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
High speed signal transmission Jan Buytaert. Topics Electrical standards: CML,LVDS, SLVS Equalization. Testbench of a readout slice. Vacuum feed-throughs.
VeloPix: The Pixel ASIC for the LHCb VELO Upgrade Kurt Rinnert (University of Liverpool) On behalf of the LHCb VELO group VERTEX 2015, Santa Fe,
Development of a Front-end Pixel Chip for Readout of Micro-Pattern Gas Detectors. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
Technical status of the Gossipo-3 : starting point for the design of the Timepix-2 March 10, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
Pixel structure in Timepix2 : practical limitations June 15, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
1/20 LHCb upgrade, Jeroen van Tilburg Nikhef Jamboree, 14 Dec 2015 Preparing for the LHCb upgrade.
Martin van Beuzekom, Jan Buytaert, Lars Eklund Opto & Power Board (OPB) Summary of the functionality of the opto & power board.
GGT-Electronics System design Alexander Kluge CERN-PH/ED April 3, 2006.
GOSSIPO-3: Measurements on the Prototype of a Read- Out Pixel Chip for Micro- Pattern Gas Detectors André Kruth 1, Christoph Brezina 1, Sinan Celik 2,
De Remigis The test has been accomplished with an SLVS signal, since that was chosen for the serial communication between the readout and the optical converter.
Hugo Furtado CERN - Microelectronics Group 11th Workshop on Electronics for LHC and future Experiments Delay25, an ASIC for timing adjustment in LHC Delay25.
FF-LYNX: 2010 & H Luca Fanucci Pisa, 14 Giugno 2011.
End OF Column Circuits – Design Review
Status of DHP prototypes
A 16:1 serializer for data transmission at 5 Gbps
Southern Methodist University
Dima Maneuski, Advances in rad-hard MAPS 2016, Birmingham
Hongda Xu1, Yongda Cai1, Ling Du1, Datao Gong2, and Yun Chiu1
On-detector electronics for the LHCb VELO Upgrade
Charge sensitive amplifier
LHC1 & COOP September 1995 Report
Digital readout architecture for Velopix
2018/6/15 The Fast Tracker Real Time Processor and Its Impact on the Muon Isolation, Tau & b-Jet Online Selections at ATLAS Francesco Crescioli1 1University.
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
Low Jitter PLL clock frequency multiplier
Strawman module design
HV-MAPS Designs and Results I
Front-end digital Status
Overview of Nikhef activities related to large-flux data transmission
The MDT TDC ASIC Development
A Low-Power High-Speed Serializer for the LHCb Pixel Detector
Phase shifter design for Macro Pixel ASIC
SVT detector electronics
LHCb PileUp VETO L0 trigger system using large FPGAs (M
FPGA Based Trigger System for the Klystron Department
Stefan Ritt Paul Scherrer Institute, Switzerland
Silicon pixel detectors and electronics for hybrid photon detectors
The LHCb Front-end Electronics System Status and Future Development
Fixed Latency Serial Links with FPGA-embedded SerDes for SuperB
Presentation transcript:

Development of a low power 5.12Gbps Data Serializer and Wireline Transmitter circuit for the VeloPix chip Vladimir Gromov Vladimir Gromov1 , Vladimir Zivkovic1, Martin van Beuzekom1, Xavi Llopart2 , Ken Wyllie2, Jan Buytaert2 , Michael Campbell2, Tuomas Poikela2,3, Massimiliano de Gaspari2 1 National Institute for Subatomic Physics (Nikhef), Amsterdam, the Netherlands 2 CERN, Geneve, Switzerland, 3 University of Turku, Finland TWEPP 2014, Aix-en-Provence, France. September 25, 2014

Outline VeloPix pixel readout chip for VELO detector upgrade in LHCb experiment data serializer circuit : a shift-register-free topology the circuit design aspects and experimental results take-aways TWEPP 2014 V.Gromov 25/09/14 2

Upgrade of VELO detector in LHCb LHCb upgrade: long shutdown 2 (LS2) (2018) luminosity of 2 x 1033cm-2s-1 (5x present) VELO: hybrid pixel detector trigger-less 26 stations (layers) total active area 1237cm2 (A3 size) vacuum compatible low material budget lowest possible power electronics radiation hard TWEPP 2014 V.Gromov 25/09/14 3

VELO detector: station layout ASIC specifications: 2 modules per station 1 tile = 1 sensor + 3 ASICs (VeloPix ) 4 tiles on both sides of the module planar silicon sensor , electron collection 5.1mm from the beam to the sensor 500Mhits/sec/cm2 55µm x 55µm pixel size 50khits/sec/pixel (~ HL-LHC in 2025) sensor tile ~15mm ~43mm beam cross section connector top sensor 200um ASIC150um substrate 400um bottom sensor 200um ASIC 150um Cooling channel TWEPP 2014 V.Gromov 25/09/14 4

Data rate per chip [Gbps] Data rates and VeloPix - successor of Timepix3 - pixel size: 55µm x 55µm pixels: 65 536 (256 x 256) area: 1.4cm x 1.4cm binary readout (no ToT) resolution/range: 25ns, 9b power: < 1.5W/cm2 up to 400Mrad, SEU tolerant technology: 130nm CMOS output data rate: >15Gbps (5x HL-LHC) VELO total : up to 2.9Tbps highly non-uniform radiation pattern Data rate per chip [Gbps] TWEPP 2014 V.Gromov 25/09/14 5

VeloPix readout chip analog FE pile-up losses < 1.6% 128 Double columns (14.08 mm) SP63 SP63 analog FE pile-up losses < 1.6% pixels grouping for sharing BX ID & SP ID to reduce data rate (30%) fast and efficient readout architecture (losses < 1%, latency < BX ID range) data traffic equalization output electrical link: 4 x 5.12Gbps Super Pixel logic Analog Front-end Pixel processor SP4 SP4 SP3 SP3 256 rows (14.08 mm) DC bus: 23bit @ 40MHz SP2 SP2 SP1 SP1 SP0 SP0 Double Column buses bus EoC1 EoC2 EoC3 EoC4 EoC5 EoC6 EoC63 EoC128 Packet Router ( 4 x 4 crossbar ) bus: 30bit @ 160MHz Data Fabric (left) Periphery (2-3mm) Packet Converter Packet Converter Packet Converter Packet Converter 8bit DDR @ 320MHz 8bit DDR @ 320MHz 8bit DDR @ 320MHz 8bit DDR @ 320MHz GWT Serializer GWT Serializer GWT Serializer GWT Serializer Driver Driver Driver Driver 1bit @ 5.12 GHz 1bit @ 5.12 GHz 1bit @ 5.12 GHz 1bit @ 5.12 GHz TWEPP 2014 V.Gromov 25/09/14 6

significant power consumption due to: Conventional Data Serializer (example GBTX) data_in 16bit @ 320MHz Reg <0:15> data_out 1bit @ 5.12GHz Shift Register D0 MUX D1 MUX D2 MUX D3 MUX D4 MUX D14 MUX D15 Q0 Q1 Q2 Q3 Q4 Q14 Q15 Sel PLL 320MHz → 5.12GHz clock (5.12GHz) clock (320MHz) significant power consumption due to: a shift register driven by a high-frequency clock (5.12GHz) on-board PLL to generate the high-frequency clock TWEPP 2014 V.Gromov 25/09/14 7

serialized output data GWT : a low power 5.12 Gbps byte-interleaved serializer / wireline transmitter data 8bit @ 320MHz Reg <8:15> MUX 16 phases posedge 0.05mW data 8bit @ 320MHz Reg <0:7> negedge 0.05mW 2mW Multi-phase DLL Edge- combiner serialized output data 1bit @ 5.12 Gbps ph_0 sel_0 ph_1 sel_1 ph_2 ph_3 sel_15 ph_14 16 x 195ps = 1 / 320MHz ph_15 clock (320MHz) 0.6mW 10mW clock (320MHz) MUX selection phases 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 data_in_reg < 3 : 10 > data_in_reg < 11 : 2 > data_out_serializer D<11> D<12> D<13> D<14> D<15> D<0> D<1> D<2> D<3> D<4> D<5> D<6> D<7> D<8> D<9> D<10> D<11> D<12> D<13> D<14> D<15> D<0> D<1> D<2> D<3> D<4> D<5> D<6> D<7> D<8> D<9> D<10> D<11> D<12> D<13> D<14> D<15> D<0> D<1> D<2> D<3> TWEPP 2014 V.Gromov 25/09/14 8

GWT : a low power 5.12 Gbps byte-interleaved serializer / wireline transmitter data 8bit @ 320MHz Reg <8:15> MUX 16 phases Driver Serialized data @ 5.12 Gbps posedge 50Ω 50Ω 1m low-mass flex cable 0.05mW pre-emphasis data 8bit @ 320MHz Reg <0:7> negedge 100Ω 0.05mW 2mW Multi-phase DLL Edge- combiner ∆U = ± 450mV ph_0 sel_0 ph_1 20mA sel_1 ph_2 45mW ph_3 sel_15 ph_14 16 x 195ps = 1 / 320MHz ph_15 0.6mW 10mW low-power topology : serializer: 15mW , wireline transmitter: 45mW delay-locked loop (DLL) – based topology : - lower phase noise (no jitter accumulation) - lower power - harmonic (false) locking (solved by design) - sensitive to the noise of the reference clock TWEPP 2014 V.Gromov 25/09/14 9

Voltage-Controlled Delay Line (DLL) 16 x delay cell dummy_PD dummy_PD Vcntr dummy_PD Vcntr 15/0.2 15/0.2 6/0.2 VN IN 6/0.12 OUT 12/0.2 6/0.2 6/0.12 VN 15/0.2 ph_0 ph_1 ph_2 ph_15 output phases current-starved delay cells full CMOS signals on each output phase full clock period delay in the VCDL unlike that in the VCO duty cycle breakdown frequency: 160MHz (50% ref. freq.) internal time jitter : < 3ps RMS output phase mismatch : systematic 10ps p-p, stochastic 30ps p-p = 20% of the Unit Interval (UI=195ps) TWEPP 2014 V.Gromov 25/09/14 10

Edge Combiner circuit _ph_0 sel_0 _ph_1 sel_1 _ph_2 _ph_15 sel_15 _ph_0 custom-tailored gates (inv, nor) to get a proper output signals output signal mismatch : systematic 16ps p-p, stochastic 32ps p-p ≈ 20% UI TWEPP 2014 V.Gromov 25/09/14 11

16-to-1 Differential Multiplexer negligible mismatch of the internal delay (130ps ± 7ps p-p) TWEPP 2014 V.Gromov 25/09/14 12

5.12 Gbps Wireline Transmitter 570Ω 570Ω 170Ω 170Ω 50Ω 50Ω out_pos out_neg 100Ω ∆U = ± 450mV 1.4mA 5mA 20mA pre_emp_en Ron UP = 40 Ω in_pos 600fF Ron DOWN = 40 Ω in_neg pre-emphasis high-frequency boosting by a pair of feed-through capacitors (optional) TWEPP 2014 V.Gromov 25/09/14 13

Velo_GWT test chip 1mm x 2mm test chip in MOSIS MPW run (18/02/2014) 3-2-3 MA metal stack on-chip Test Data Generator (repetitive pattern / PRBS 216), 320MHz reference clock : external / ePll [1] (on-chip) [1] F. Tavernier “A Radiation-Hard PLL for Frequency Multiplication with Programmable Input Clock and Phase-Selectable Output Signals in 130nm CMOS” , TWEPP2012, Oxford, UK TWEPP 2014 V.Gromov 25/09/14 14

VELO_GWT chip bonded on the pcb Velo_GWT evaluation set-up 12.5GHz Agilent BERT power : 60mW (1.5V @ 40mA) VELO_GWT chip bonded on the pcb evaluation board TWEPP 2014 V.Gromov 25/09/14 15

Phase mismatch measurements 0101010101 data pattern both outputs @ 5.12Gbps, 100mv/div, 500ps/div, clock external 320MHz phase_12 phase_13 phase_14 phase_15 phase_10 phase_1 phase_3 phase_5 phase_7 phase_9 phase_11 phase_12 phase_13 phase_14 phase_0 phase_2 phase_4 phase_6 phase_8 phase_15 phase_0 phase_1 phase_2 phase_3 phase_4 phase width mismatch : ~ 50ps p-p (25% UI) TWEPP 2014 V.Gromov 25/09/14 16

Eye diagram measurements external (clean) ref. clock (320MHz) 0101010101 pattern ePll generated (noisy) ref. clock (320MHz) 0101010101 pattern ePll generated (noisy) ref. clock (320MHz) PRBS pattern eye diagram opening : ~ 60ps @ ± 200mV (30% UI) GWT internal phase noise is low severe impact of the jitter on the ref. clock (ePll-generated) TWEPP 2014 V.Gromov 25/09/14 17

Operation bandwidth limits 0101010101 data pattern @ external ref. clock Eye opening, [% Unit Interval ] data pattern PRSG @ ePll generated ref. clock nominal : 5.12Gbps bandwidth [Gbps] GWT can operate in range from 2.56Gbps to 6.24Gbps corresponding to the reference clock range 160MHz to 390MHz TWEPP 2014 V.Gromov 25/09/14 18

Operation power supply voltage limits 0101010101 data pattern, eye diagram opening ± 200mV Eye opening, [% Unit Interval ] VDD, [Volt] VDD must not be lower than 1.2V TWEPP 2014 V.Gromov 25/09/14 19

Take-aways GWT is a 5.12Gbps Data Serializer and Wireline Driver circuit being developed for VeloPix chip a shift-register-free topology has been chosen for the serializer to provide low power consumption (15mW) and avoid a high-speed PLL four GWT units on each VeloPix will transmit a large amount of data (> 15Gbps) over a 1 meter low-mass copper cable contributing only 10% to the chip power budget ( 240mW = 4 x {15mW + 45mW}) measurements of the prototypes submitted in 130nm technology demonstrate expected results the circuit will be re-designed in TSMC 130nm technology Vertex2011 V.Gromov 24/06/11 20

Spare slides