Cosmic-Rays Astrophysics with AMS-02

Slides:



Advertisements
Similar presentations
ELENA VANNUCCINI ON BEHALF OF PAMELA COLLABORATION Measurement of the Hydrogen and Helium absolute fluxes with the PAMELA experiment.
Advertisements

E. Mocchiutti, INFN Trieste - CALOR th June 2006, Chicago E. Mocchiutti 1, M. Albi 1, M. Boezio 1, V. Bonvicini 1, J. Lund 2, J. Lundquist 1, M.
The Results of Alpha Magnetic Spectrometer (AMS01) Experiment in Space Behcet Alpat I.N.F.N. Perugia TAUP 2001 Laboratori Nazionali del Gran Sasso, Italy.
AMS Discoveries Affecting Cosmic-Ray SIG Priorities Eun-Suk Seo Inst. for Phys. Sci. & Tech. and Department of Physics University of Maryland AAS HEAD.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Performance of AMS-02 on the International Space Station DESY Theory Workshop, Hamburg Melanie Heil Supported by the Carl-Zeiss Foundation.
Davide Vitè - MInstPhys CPhys Particle Physics 2000, Edimburgh, 12 April AMS the Anti-Matter Spectrometer n The past:10 days on Discovery n The.
The Alpha Magnetic Spectrometer on the International Space Station Mercedes Paniccia, University of Geneva (Switzerland), November 2003 An experiment to.
D. VITE' - AMS Genève Cartigny, AMS the Anti-Matter Spectrometer n The past:  1999 n The present:2000 n The future: and beyond… n.
Results from PAMELA Mirko Boezio INFN Trieste, Italy On behalf of the PAMELA collaboration Indirect and Direct Detection of Dark Matter February 7 th 2011.
Journée de réflexion du DPNC Cartigny – July 2, 2004 Mercedes Paniccia Université de Genève The Construction of AMS.
The Time-of-Flight system of the PAMELA experiment: in-flight performances. Rita Carbone INFN and University of Napoli RICAP ’07, Rome,
3rd Presentation of Prof. Cho’s Class Hossain Ahmed AMS Experiment.
Nicola Tomassetti Origin of the Spectral Hardening in Galactic Cosmic Rays ECRS July 2012 Moscow INFN Perugia.
1 Astroparticle Physics with AMS-02 Dr. C.Sbarra INFN-Bologna, Italy On behalf of the AMS collaboration 12th Lomonosov Conference, Moscow 2005.
Alpha Magnetic Spectrometer. A particle physics experiment module that is to be mounted on the International Space Station. A particle physicsInternational.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Aspen 4/28/05Physics at the End of the Galactic Cosmic Ray Spectrum - “Below the Knee” Working Group “Below the Knee” Working Group Report - Day 3 Binns,
Valter Bonvicini INFN – Trieste, Italy On behalf of the Gamma-400 Collaboration Neutrino Oscillation Workshop - NOW 2012 Conca Specchiulla (Otranto, Lecce,
May 5-10, Buénerd 1 THE AMS RICH COUNTER The AMS RICH collaboration: Bologna, Grenoble, Lisbon, Madrid, Maryland, Mexico M. Buénerd.
Andrei Kounine / MIT on behalf of AMS-02 collaboration ICHEP 2004, Beijing Astroparticle physics with AMS-02.
Evaluation of the flux of CR nuclei inside the magnetosphere P. Bobik, G. Boella, M.J. Boschini, M. Gervasi, D. Grandi, K. Kudela, S. Pensotti, P.G. Rancoita.
Antimatter in Space Antimatter in Space Mirko Boezio INFN Trieste, Italy PPC Torino July 14 th 2010.
Roberta Sparvoli University of Rome “Tor Vergata” and INFN Rome, Italy
Lake Louise - February Detection & Measurement of gamma rays in the AMS-02 Detector J. Bolmont - LPTA - IN2P3/CNRS Montpellier - France.
Lake Louise Winter Institute, 23rd February, Cosmic Ray Velocity and Electric Charge Measurements in the AMS experiment Luísa Arruda on behalf of.
1 PEBS Prototype PERDaix was launched in October 2010 from Kiruna, Sweden.
Roberta Sparvoli Roberta Sparvoli for the PAMELA Collaboration University of Rome Tor Vergata and INFN Roma II, Italy Uuuuuu Uuuu uuuuuuu.
The PAMELA Experiment: Preliminary Results after Two Years of Data Taking Emiliano Mocchiutti - INFN Trieste on behalf of the PAMELA Collaboration.
Indirect Dark Matter Search with AMS-02 Stefano Di Falco INFN & Universita’ di Pisa for the AMS collaboration.
COSMIC RAY PHYSICS WITH AMS Joseph Burger MIT On behalf of the AMS-02 collaboration EPS2003 Aachen Particle Astrophysics July 17, 2003
Simonetta Gentile Rencontres du Vietnam,Hanoi 2004 Cosmic Ray Physics with the Alpha Magnetic Spectrometer Simonetta Gentile Università di Roma La Sapienza,
Observation of light nuclei with PAMELA Roberta Sparvoli Laura Marcelli, Valeria Malvezzi, Cristian De Santis and the PAMELA Collaboration.
The Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS) Maria Ionica I.N.F.N. Perugia International School.
Measurements of Cosmic-Ray Helium, Lithium and Beryllium Isotopes with the PAMELA- Experiment Wolfgang Menn University of Siegen On behalf of the PAMELA.
H, He, Li and Be Isotopes in the PAMELA-Experiment Wolfgang Menn University of Siegen On behalf of the PAMELA collaboration International Conference on.
Direct measurements of cosmic rays in space ROBERTA SPARVOLI ROME “TOR VERGATA” UNIVERSITY AND INFN, ITALY Vulcano Workshop 2014 Vulcano Island (Italy),
10 Feb 2009PS638 T. Gaisser1 Lecture 1: Introduction Cosmic-ray spectrum and measurements.
Cosmic rays, antimatter, dark matter: the need for cross section data
Rita Carbone, RICAP 11, Roma 3 26/05/2011 Stand-alone low energy measurements of light nuclei from PAMELA Time-of-Flight system. Rita Carbone INFN Napoli.
CHARGED COSMIC RAYS PHYSICS DETECTION OF RARE ANTIMATTER COMPONENTS LOW ENERGY PARTICLES (>GeV) HE ASTROPHYSICS.
ISCRA – Erice July 2004 Ana Sofía Torrentó Coello - CIEMAT THE AMS EXPERIMENT Ana Sofía Torrentó Coello – CIEMAT (Spain) On behalf of AMS Collaboration.
DAMPE: now in orbit G. Ambrosi – DAMPE coll.. DAMPE: now in orbit G. Ambrosi – DAMPE coll.
Dark Matter and CHARGED cosmic rays Fiorenza Donato Physics Dept. & INFN - Torino, Italy The International School for AstroParticle Physics (ISAPP) 2013,
The high-energy antiproton-to-proton flux ratio with the PAMELA experiment Massimo Bongi INFN - Florence Payload for Antimatter/Matter Exploration and.
HIGH ENERGY POSITRON DETECTION VIA SYNCHROTRON RADIATION IN MAGENTOSPHERE “SONYA” project А.М. Гальпер 1, О.Ф. Прилуцкий 2, С.В. Колдашов 1, В.В. Михайлов.
1 A. Zech, Instrumentation in High Energy Astrophysics Chapter 6.2: space based cosmic ray experiments.
on behalf of the NUCLEON collaboration
Multi-Strange Hyperons Triggering at SIS 100
PEBS: Positron Electron Balloon Spectrometer Henning Gast
Antiproton and Electron Measurements and Dark Matter Searches
Indirect dark matter search with the balloon-borne PEBS detector
Solar gamma-ray and neutron registration capabilities of the GRIS instrument onboard the International Space Station Yu. A. Trofimov, Yu. D. Kotov, V.
Idee per lo sviluppo del Charge Identifier
The Transition Radiation Detector for the PAMELA Experiment
Cosmic Rays & Supernova Remnants love story: The Importance
Search for Cosmic Ray Anisotropy with the Alpha Magnetic Spectrometer on the International Space Station G. LA VACCA University of Milano-Bicocca.
Fiorenza Donato Dipartimento di Fisica, Università di Torino
DAMPE: first data from space
Imaging Dark Matter with the Pamela Experiment
CALET-CALによる ガンマ線観測初期解析
The magnetic spectrometer of PAMELA
Cosmic-Ray Lithium and Beryllium Isotopes in the PAMELA-Experiment
Measurements of Cosmic-Ray Lithium and Beryllium Isotopes
for the PAMELA collaboration
XX ECRS ,Lisbon, 5th September, 2006
AMS : A COSMIC RAY OBSERVATORY ON THE INTERNATIONAL SPACE STATION Carlo Bosio INFN - Roma ‘La Sapienza’ University Susy June 2004.
Isotopic abundances of CR sources
ACCELERATORS AND DETECTORS
The magnetic spectrometer of PAMELA
Presentation transcript:

Cosmic-Rays Astrophysics with AMS-02 Alberto Oliva* on the behalf of the AMS Collaboration *University and INFN Perugia, Italy Outline High Energy Astrophysics with AMS The AMS-02 Detector, and the Measurement Methods Expected Physics

AMS-02 experiment High Energy Particle Physics in Space (ISS): Large Acceptance, Long Duration  High Statistics Charged Particles & Nuclei Spectra High Energy Gamma Rays Physics goals: Search for Primordial Antimatter by Direct Detection of Antinuclei (He/He<10-9) Dark Matter Signatures in p, e+, d,  spectra Production, Acceleration and Propagation of Cosmic-Rays Solar Modulation

AMS-02 experiment High Energy Particle Physics in Space (ISS): Large Acceptance, Long Duration  High Statistics Charged Particles & Nuclei Spectra High Energy Gamma Rays Physics goals: Search for Primordial Antimatter by Direct Detection of Antinuclei (He/He<10-9) Dark Matter Signatures in p, e+, d,  spectra Production, Acceleration and Propagation of Cosmic-Rays Solar Modulation

CR spectrum and AMS-02 expectation C2 on HEAO-3 (1979) PAMELA on DK1 (2006) AMS-02 on ISS (2009) Perigee £ Apogee 490 £ 510 km 350 £ 600 km 360 £ 440 km Inclination 44° 70° 52° t 600 days 3 years Acceptance 4 cm2¢sr 21.5 cm2¢sr 0.45 m2¢sr Energy 600 MeV/n – 35 GeV/n 100 MeV/n – 250 GeV/n 700 MeV/n – 1 TeV/n Charge distinction Z · 26 Z · 6 Mass reconstruction no yes 1010 H 109 He 107 C, O 106 Be, Fe H He C O Fe Be

Cosmic Nuclei Astrophysics stable  decay K capture primary CR big bang and stellar nucleosynthesis age of the origin material (U, Pu, Cm, …) Delay between synthesis and acceleration (56Ni, 57Co) secondary CR (dependent from ISM) diffusion process (B/C, sub-Fe/Fe) galaxy confinement time (10Be, 26Al, 36Cl, 54Mn) Energy changes (decelerations) Secondaries > 105 y Source Our Galaxy SNR Shock Wave Primaries 107 y AMS-02

Cosmic Nuclei Astrophysics stable  decay K capture primary CR big bang and stellar nucleosynthesis age of the origin material (U, Pu, Cm, …) Delay between synthesis and acceleration (56Ni, 57Co) secondary CR (dependent from ISM) diffusion process (B/C, sub-Fe/Fe) galaxy confinement time (10Be, 26Al, 36Cl, 54Mn) Energy changes (decelerations) > 105 y Source Our Galaxy SNR Shock Wave Cosmic rays abundances 107 y AMS-02

Cosmic Nuclei Astrophysics stable  decay K capture primary CR big bang and stellar nucleosynthesis age of the origin material (U, Pu, Cm, …) Delay between synthesis and acceleration (56Ni, 57Co) secondary CR (dependent from ISM) diffusion process (B/C, sub-Fe/Fe) galaxy confinement time (10Be, 26Al, 36Cl, 54Mn) Energy changes (decelerations) > 105 y Source Our Galaxy SNR Shock Wave 107 y Charge/Mass Distinction AMS-02

Cosmic Nuclei Astrophysics stable  decay K capture primary CR big bang and stellar nucleosynthesis age of the origin material (U, Pu, Cm, …) Delay between synthesis and acceleration (56Ni, 57Co) secondary CR (dependent from ISM) diffusion process (B/C, sub-Fe/Fe) galaxy confinement time (10Be, 26Al, 36Cl, 54Mn) Energy changes (decelerations) > 105 y Source Our Galaxy SNR Shock Wave Maurin, Taillet, FD A&A 2002 B/C sub-Fe/Fe AMS-02 Charge Distinction

Cosmic Nuclei Astrophysics stable  decay K capture primary CR big bang and stellar nucleosynthesis age of the origin material (U, Pu, Cm, …) Delay between synthesis and acceleration (56Ni, 57Co) secondary CR (dependent from ISM) diffusion process (B/C, sub-Fe/Fe) galaxy confinement time (10Be, 26Al, 36Cl, 54Mn) Energy changes (decelerations) > 105 y Mass Distinction Source Our Galaxy SNR Shock Wave 6Li/7Li 3He/4He Maurin, Taillet, FD A&A 2002 AMS-02 Charge Distinction

Cosmic Nuclei Astrophysics stable  decay K capture primary CR big bang and stellar nucleosynthesis age of the origin material (U, Pu, Cm, …) Delay between synthesis and acceleration (56Ni, 57Co) secondary CR (dependent from ISM) diffusion process (B/C, sub-Fe/Fe) galaxy confinement time (10Be, 26Al, 36Cl, 54Mn) Energy changes (decelerations) HALO > 105 y Source Our Galaxy SNR Shock Wave T(10Be) » 1.5£106 y Mass Distinction 107 y AMS-02 10Be/9Be

AMS-02 Detector Cryogenic Superconducting Magnet of 0.8 T TOF: 4 layers of scintillators (150 ps resolution) Tracker: 8 layers of Si detectors (10 (30) m) RICH Detector (/ = 0.1/Z %) TRD Detector: p/e rejection in 103 Pb/Sc EM Calorimeter: p/e rejection 104 Geometric acceptance of 0.45 m2¢sr Z measurement up to Iron A global statistics above 1010 particles Detector redundancy (charge, velocity) Trigger: TOF, ACC (no ACC for ions) or ECAL for 

Charge measurement The charge evaluation is redundant Tracker, TOF: energy deposition by ionization RICH: number of photons in the Cherenkov ring B C Beam test Fe Be N O F Ne

Rigidity measurement The AMS-02 Si Tracker: Silicon double-sided sensors 8 layers arranged in 5 planes Resolution < 10 m in the bending direction A rigidity determination of 2% at 10 GV Beam test Simulation

Velocity measurement RICH Redundant measurements TOF:  = L/t with / = 1% RICH:  with / = 0.01% Beam test Beam test

Mass measurement Simulation The AMS-02 spectrometry Tracker for rigidity and charge RICH for velocity and charge Isotopic distinction up to 10 GeV/n 10Be/9Be Simulation

Mass measurement Simulation The AMS-02 spectrometry Tracker for rigidity and charge RICH for velocity and charge Isotopic distinction up to 10 GeV/n Two radiators: NaF (n = 1.334) Aerogel (n = 1.050) 10Be/9Be Simulation

Long term measurement After 3 years of “full“ magnetic spectrometry: Lowering TRD gain by a factor 20 Measure  for charges up to Iron 10 – 30 % energy resolution From 200 to 4000 GeV/n from the TRACER collaboration

Expected Physics 1 day 1 week 6 months 1 year d/p 3He/4He B/C 10Be/9Be 107 particles 106 particles 6 months 1 year B/C 10Be/9Be 107 particles 107 particles

Conclusions AMS-02 in the integration phase and will be installed on the ISS in 2009 AMS-02 will perform high statistic measurement of all chemical species up to Iron in CR in a wide energy spectrum AMS-02 will play a key role in the CR Astrophysics studies THANK YOU