Date of download: 12/27/2017 Copyright © ASME. All rights reserved.

Slides:



Advertisements
Similar presentations
Date of download: 5/30/2016 Copyright © ASME. All rights reserved. From: A Resistance–Capacitance Model for Real-Time Calculation of Cooling Load in HVAC-R.
Advertisements

Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Review and Advances in Heat Pipe Science and Technology J. Heat Transfer. 2012;134(12):
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: A Finite-Temperature Continuum Theory Based on Interatomic Potentials J. Eng.
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Thermal Analysis of Inclined Micro Heat Pipes J. Heat Transfer. 2005;128(2):
Date of download: 6/28/2016 Copyright © ASME. All rights reserved. From: Convective Heat Transfer and Contact Resistances Effects on Performance of Conventional.
Date of download: 7/2/2016 Copyright © ASME. All rights reserved. From: Inverse Heat Conduction in a Composite Slab With Pyrolysis Effect and Temperature-Dependent.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. From: Energy Conservative Dissipative Particle Dynamics Simulation of Natural Convection.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. From: Modeling of Heat Transfer in a Moving Packed Bed: Case of the Preheater in Nickel.
Date of download: 7/12/2016 Copyright © ASME. All rights reserved. From: Computer Simulation of Drying of Food Products With Superheated Steam in a Rotary.
Date of download: 7/16/2016 Copyright © ASME. All rights reserved. From: Investigation of Cooling Process of a High-Temperature Hollow Cylinder in Moving.
Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Simulation and Optimization of Drying of Wood Chips With Superheated Steam in.
From: Nonlocal Modeling and Swarm-Based Design of Heat Sinks
Date of download: 9/27/2017 Copyright © ASME. All rights reserved.
Date of download: 10/2/2017 Copyright © ASME. All rights reserved.
Date of download: 10/3/2017 Copyright © ASME. All rights reserved.
From: The Lubrication Regime at Pin-Pulley Interface in Chain CVTs
Date of download: 10/6/2017 Copyright © ASME. All rights reserved.
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
Date of download: 10/10/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
From: Nanoscale Heat Conduction Across Metal-Dielectric Interfaces
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
From: Thermal Analysis of Composite Phase Change Drywall Systems
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
From: Heat Conduction in Nanofluid Suspensions
Date of download: 10/30/2017 Copyright © ASME. All rights reserved.
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
From: Heat Exchanger Efficiency
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 12/17/2017 Copyright © ASME. All rights reserved.
Date of download: 12/18/2017 Copyright © ASME. All rights reserved.
Date of download: 12/19/2017 Copyright © ASME. All rights reserved.
Date of download: 12/19/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
From: Vapor Chamber Acting as a Heat Spreader for Power Module Cooling
Date of download: 12/25/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
From: An Investigation of a Tunable Magnetomechanical Thermal Switch
Date of download: 12/30/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
Date of download: 3/4/2018 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 12/27/2017 Copyright © ASME. All rights reserved. From: Enhancement of Interfacial Thermal Conductance of SiC by Overlapped Carbon Nanotubes and Intertube Atoms J. Heat Transfer. 2017;139(5):054504-054504-4. doi:10.1115/1.4035998 Figure Legend: (a) Longitudinal view of simulation system and (b) and (c) temperature profiles and cross section views of simulation system for the cases of N = 0 and N = 2. N denotes the number of intertube atoms. The overlapped segment of CNTs and the whole parts between SiC are considered as the thermal interfaces of two CNTs and the whole simulation system, respectively.

Date of download: 12/27/2017 Copyright © ASME. All rights reserved. From: Enhancement of Interfacial Thermal Conductance of SiC by Overlapped Carbon Nanotubes and Intertube Atoms J. Heat Transfer. 2017;139(5):054504-054504-4. doi:10.1115/1.4035998 Figure Legend: The interfacial thermal conductance (G) between two CNTs (GCNTs) and the total thermal conductance (GTotal) of simulation system at room temperature as functions of the number of intertube atoms (N). The interfacial thermal conductance shows a sharp increase from N = 0 to N = 1. Both GCNTs and GTotalconverge gradually with the increase of N. Finally, GCNTs is enhanced by 2 orders of magnitude, and GTotal is enhanced by almost 20 times as well.

Date of download: 12/27/2017 Copyright © ASME. All rights reserved. From: Enhancement of Interfacial Thermal Conductance of SiC by Overlapped Carbon Nanotubes and Intertube Atoms J. Heat Transfer. 2017;139(5):054504-054504-4. doi:10.1115/1.4035998 Figure Legend: The temperature dependence of interfacial thermal conductance (G) between two CNTs for some typical cases of different N. Monotonic increases are observed as a function of temperature for all the cases.

Date of download: 12/27/2017 Copyright © ASME. All rights reserved. From: Enhancement of Interfacial Thermal Conductance of SiC by Overlapped Carbon Nanotubes and Intertube Atoms J. Heat Transfer. 2017;139(5):054504-054504-4. doi:10.1115/1.4035998 Figure Legend: The probability distributions of atomic forces along (a) radial, (b) axial, and (c) tangential directions, and (d) vibrational density of states (VDOS) along radial direction of the atom at the connection of outer CNT (circled one in (d)) for the cases of N = 0 and N = 2