Dust extinction, emission & polarisation in the diffuse ISM

Slides:



Advertisements
Similar presentations
Ralf Siebenmorgen Köln 2012 ISM dust model Monte Carlo dust radiative transfer Proto-planetary disks: ring-like structures PAH destruction in proto-planetary.
Advertisements

Thermonuclear Supernovae Lifan Wang Texas A&M University Oct 6, 2013.
To date: Observational manifestations of dust: 1.Extinction – absorption/scattering diminishes flux at wavelengths comparable to light – implies particles.
The Abundance of Free Oxygen Atoms in the Local ISM from Absorption Lines Edward B. Jenkins Princeton University Observatory.
AGN Unification Viewed in the mid-IR Lei Hao Cornell University Spectra.
What can the Interstellar Extinction Curves Tell us About? Takaya Nozawa Masataka Fukugita (Kavli IPMU, University of Tokyo) 2012/08/07.
The nature of the dust and gas in the nucleus of NGC 1068.
CfA B.T. Draine: Dust in the submm1 Dust in the sub-mm or: what is  ? B. T. Draine Princeton University 2005 June 14.
DETERMINING THE DUST EXTINCTION OF GAMMA-RAY BURST HOST GALAXIES: A DIRECT METHOD BASED ON OPTICAL AND X-RAY PHOTOMETRY Li Yuan 黎原 Purple Mountain Observatory.
Jonathan Slavin Harvard-Smithsonian CfA
University of Chicago 2007 July 30 SOFIA-POL 2007 The Infrared - Millimeter Polarization Spectrum John Vaillancourt California Institute of Technology.
Dust polarization expectations The PILOT experiment J.-Ph. Bernard CESR Toulouse Dust polarization at long wavelengths J.-Ph. Bernard, Orsay, Bpol meeting.
Dust and Metal Column Densities in GRB Host Galaxies Patricia Schady (MPE) T.Dwelly, M.J.Page, J.Greiner, T.Krühler, S.Savaglio, S.R.Oates, A.Rau, M.Still.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
1 Common Far-Infrared Properties of the Galactic Disk and Nearby Galaxies MNRAS 379, 974 (2007) Hiroyuki Hirashita Hiroyuki Hirashita (Univ. Tsukuba, Japan)
ASTR112 The Galaxy Lecture 10 Prof. John Hearnshaw 13. The interstellar medium: dust IRAS view of warm dust in plane of the Galaxy.
Lecture 14 Star formation. Insterstellar dust and gas Dust and gas is mostly found in galaxy disks, and blocks optical light.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
APOGEE: The Apache Point Observatory Galactic Evolution Experiment l M. P. Ruffoni 1, J. C. Pickering 1, E. Den Hartog 2, G. Nave 3, J. Lawler 2, C. Allende-Prieto.
Ralf Siebenmorgen Crete 2010 AGN dust model of 3CR sources  MIR imaging & spectroscopy  ISM dust model & PAH  vectorized Monte Carlo model  SED of.
IAU Coll Shanghai 2005 The Dust Obscuration bias in Damped Ly  systems Giovanni Vladilo Osservatorio Astronomico di Trieste Istituto Nazionale.
Interstellar Matter and Star Formation in the Magellanic Clouds François Boulanger (IAS) Collaborators: Caroline Bot (SSC), Emilie Habart (IAS), Monica.
Ralf Siebenmorgen Toulouse June’10  Dust model of the ISM  PAH bands in starburst nuclei  Monte Carlo radiative transfer  PAH destruction in T Tauri.
Constraints on small grains from ISO, Spitzer data: Towards predicting the cm-emission of PAHs L. Verstraete N. FlageyIAS, Orsay M. Compiègne.
X-ray Absorption and Scattering by Interstellar Dust: the XMM view Elisa Costantini Max Planck Institute for extraterrestrial Physics (MPE) P. Predehl,
Detection of the 2175Å Dust Extinction Feature at high z Junfeng Wang (Penn State/UFL) Collaborators : Jian Ge (U. of Florida), Pat Hall (Princeton U./York.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Polarimetry in Astronomy Or Do you know where your photons are coming from? Elizabeth Corbett AAO.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
AST101 Lecture 20 The Parts of the Galaxy. Shape of the Galaxy.
ISM X-ray Astrophysics Randall K. Smith Chandra X-ray Center.
Identification of red supergiants in the Local Group with mid-IR photometry Nikolay Britavskiy NOA supervisor: Dr. Alceste Bonanos Collaborators: S. Williams,
Star Formation and H2 in Damped Lya Clouds
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
AGN / Starbursts in the very dusty systems in Bootes Kate Brand + the Bootes team NOAO Lijiang, August 2005.
AST101 Lecture 20 Our Galaxy Dissected. Shape of the Galaxy.
Galactic Extinction Curves and Interstellar Dust Models Nozawa, T. and Fukugita, M. (Kavli IPMU, University of Tokyo) 2012/05/08.
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
Grain Shattering and Coagulation in Interstellar Medium Hiroyuki Hirashita (ASIAA, Taiwan) Huirong Yan (Univ. of Arizona) Kazu Omukai (NAOJ)
減光曲線から探る星間ダストの 多様性 ( Variation of interstellar dust probed by extinction curves) 野沢 貴也 (Takaya Nozawa) & 福来 正孝 (Masataka Fukugita) (Kavli IPMU, University.
Dust Extinction in GRBs Patricia Schady UCL-MSSL M.J.Page (MSSL-UCL), S.R Oates (MSSL-UCL), M. Still (MSSL-UCL), M.De Pasquale (MSSL-UCL), T. Dwelly (Southampton.
Netherlands Organisation for Scientific Research High resolution X-ray spectroscopy of the Interstellar Medium (ISM) C. Pinto (SRON), J. S. Kaastra (SRON),
Netherlands Organisation for Scientific Research Probing interstellar dust through X-ray spectroscopy C. Pinto *, J. S. Kaastra * †, E. Costantini *, F.
Netherlands Organisation for Scientific Research High-resolution X-ray spectroscopy of the chemical and physical structure of the Interstellar Medium C.
UVIS spectrometry of Saturn’s rings
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
On the reddening law observed for Type Ia Supernovae
SN 1987A: The Formation & Evolution of Dust in a Supernova Explosion
Dust Extinction - Overview
Part 2: The Milky Way 2.1 Components and Structure
National Observatory of Athens
Spectrally-polarized features of ε Aurigae: In and out of eclipse
A Cold, Nearby Cloud in the Local Bubble
Galactic Astronomy 銀河物理学特論 I Lecture 1-6: Multi-wavelength properties of galaxies Seminar: Draine et al. 2007, ApJ, 663, 866 Lecture: 2011/11/14.
2014/09/13 高赤方偏移クェーサー母銀河の 星間ダスト進化と減光曲線 (Evolution of interstellar dust and extinction curve in the host galaxies of high-z quasars) 野沢 貴也 (Takaya Nozawa)
Galactic Diffuse Emission for DC2
by Th. Henning, and F. Salama
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
2016/09/16 Properties of Interstellar Dust as Probed by Extinction Laws toward Type Ia Supernovae Takaya Nozawa (National Astronomical Observatory of Japan)
Peculiar Extinction Laws observed for Type Ia Supernovae
On Deuterated Polycyclic Aromatic Hydrocarbons in Space
High Resolution Spectroscopy of the IGM: How High
Mikako Matsuura National Astronomical Observatory of Japan
Ia型超新星の特異な減光則を 引き起こす母銀河ダストの性質
2017/01/23 Properties of Dust Accounting for Extinction Laws toward Type Ia Supernovae (Nozawa, T. 2016, Planetary and Space Science, 133, 36) Takaya Nozawa.
Dust Polarization in Galactic Clouds with PICO
Three-Dimensional Distribution of the Interstellar Dust in the Milky Way Helong Guo Supervisor: Xiaowei Liu,Bingqiu Chen.
Presentation transcript:

Dust extinction, emission & polarisation in the diffuse ISM Stefano Bagnulo, Nikolai Voshchinnikov, Nick Cox (PI) Extinction, emission and polarisation of dust Large Interstellar Polarisation Survey

ISM dust Simultaneously model : - Extinction - Emission - Polarisation Fitzpatrick (1999) Simultaneously model : - Extinction - Emission - Polarisation

PAH absorption cross section + ‘’2200” bump Siebenmorgen et al. (2014) Malloci et al. (2007) Verstraete et al. 1992 Siebenmorgen et al. (2014)

ISM dust Solar neighborhood Abundances [X/H in ppm]: 31Si + 150aC + 50gr + 30PAH Si + aC : 60Å < a < 0.2-0.3µm ~ a-3.5 Graphite : 5Å < a < 80 Å ~ a-3.5 PAH : 30, 200 C Siebenmorgen et al. (2014)

Di-chroic polarisation Voshchinnikov(2012) Siebenmorgen et al. (2014)

Linear ISM polarisation empirical Serkowski formulae Siebenmorgen et al. (2014)

Linear polarisation Silicate feature Siebenmorgen et al. (2014)

circular polarisation linear polarisation circular polarisation Siebenmorgen et al. (2014)

Influence of model parameters: Upper and lower particle radius Siebenmorgen et al. (2014)

Influence of model parameters: Exponent of size distribution Siebenmorgen et al. (2014)

FIR/submm extinction cross section: Prolate/Sphere Siebenmorgen et al. (2014)

Observing polarisation spectra FORS/VLT data = space based observations Siebenmorgen et al. (2014)

Large Interstellar Polarisation Survey (LIPS, PI:Cox) Target distribution (l,b): - Literature: 174 known stars - LIPS: 108 targets

LIPS: Calibration Observing low (<0.3%) polarisation: individual reads Observing low (<0.3%) polarisation: re-binned

LIPS: Calibration

Serkowski parameters:

LIPS: First Results Serkowski fit strong polarisation

LIPS: First Results Serkowski fit low polarisation

LIPS detection statistics of pmax, λmax, K ~108 stars

Distribution of linear polarisation pmax within LIPS

Distribution of Serkowski parameter λmax within LIPS

Distribution of Serkowski parameter K within LIPS K ~ 1.15

K viz λmax ~174 known stars from literature Voshchinnikov & Hirashita (2014)

Pmax viz λmax -> degenerated (Ω, δ0) rcut Ω Magnetic filed and/or grain alignment (Voshchinnikov & Hirashita 2014)

extinction & polarisation Simultaneous fit of extinction & polarisation Siebenmorgen et al. (2014)

Extinction fit Dust attenuation Dust extinction cross section ..of particle of population Υ Siebenmorgen et al. (2014)

Extinction: 6 fit parameters Dust attenuation Particle size Exponent of size distribution Relative dust abundances (n-1) = 4 parameters Siebenmorgen et al. (2014)

Caveats on extinction fit Scattering in or out-of-the beam Siebenmorgen et al. (2014)

Caveats on extinction fit Scattering in or out-of-the beam dust clump Scicluna & Siebenmorgen, 2015

Caveats on extinction fits MW type SMC type Milky Way dust ✕ scattering medium -> SMC type extinction curve , , A&A, 2009

Caveats on extinction fit Scattering (Sicluna & Siebenmorgen 2015) Particle size 0.5nm ~ OK Siebenmorgen et al. (2014)

->Mean grain size 50 times larger than in ISM SPHERE: XAO diffraction limited optical polarimetry of supergiant VYCMa ->Mean grain size 50 times larger than in ISM Scicluna et al (2015)

r+(Silicates) = r+(amorph.Carbon) Particle size Is the growth of silicates and aC grains similar? Holds: r+(ext) = r+(pol) ? Siebenmorgen et al. (2014)

Extinction fit parameters Particle size Exponent of size distribution -> simplified assumption Scattering (Scicluna & Siebenmorgen 2015) Siebenmorgen et al. (2014)

Extinction fit parameters Scattering (Scicluna & Siebenmorgen 2015) Particle size Exponent of size distribution Simplified assumption Relative dust abundances -> (n-1) = 4 parameters Siebenmorgen et al. (2014)

Caveats on polarisation fit For number of dust clouds along the line-of-sight of LIPS targets > 1 -> Adding-up of Stokes vectors results in de-polarisation Siebenmorgen et al. (2014)

Local dust distribution (Lallement et al. 2015)

Local dust distribution By high resolution spectroscopy (UVES@VLT) of IS lines: Ca II doublet (warm ISM) KI line (cold ISM) NaI, …

Local dust distribution 1 cloud 1 cloud dominated several velocity components Jacek Krelowski, private comm.

52 LIPS targets with UVES spectra

Extinction & polarisation fit UV extinction (Valencic et al. 2014) Optical extinction RV (F&M2004)

Extinction & polarisation: … more examples

LIPS: … fit first 7 stars nvsg = no very small grains p5 = 5 free parameters P7 = 7 free parameters

LIPS: … median best fit models nv nv = no very small grains p5 = 5 free parameters p7 = 7 free parameters

Summary First results of the Large Interstellar Polarisation Survey includes 108 FORS spectra and 52 existing UVES high resolution spectra. Optical polarisation explained by aligned prolates, with silicates as major contributor need 10µm polarisation spectroscopy Simultaneous fit of extinction + polarisation - need VSG - q ~ 3.1 - r-pol ~ 100nm, r+ ~ 330nm

Thank You p7 p5 nv nv = no very small grains p5 = 5 free parameters