Search for unbound excited states of proton rich nuclei

Slides:



Advertisements
Similar presentations
SYNTHESIS OF SUPER HEAVY ELEMENTS
Advertisements

Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Initial Science Case For GRETINA at ATLAS M.P. Carpenter Physics Division, Argonne National Laboratory ANL Gretina Workshop March 1, 2013.
March 1, 2013GRETINA workshop Coulomb excitation of even Ru and Mo isotopes Juho Rissanen Nuclear Structure Group, Lawrence Berkeley.
CEA DSM Irfu Shell evolution towards 100 Sn Anna Corsi CEA Saclay/IRFU/SPhN.
Exploring the drip lines: where are the proton and neutron drip lines exotic decay modes: - two-proton radioactivity -  -delayed multi-particle emission.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
The peculiarities of the production and decay of superheavy nuclei M.G.Itkis Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia.
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
Relativistic Coulomb excitation of nuclei near 100 Sn C.Fahlander, J. Eckman, M. Mineva, D. Rudolph, Dept. Phys., Lund University, Sweden M.G., A.Banu,
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28.
Rare ISotope INvestigation at GSI Status of the relativistic beam campaign Introduction Fast beam physics program Experimental methods Status and perspectives.
1107 Series of related experiments; first for transfer with TIGRESS Nuclear structure motivation for 25,27 Na beams Nuclear astrophysics motivation for.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Spectroscopy and lifetime measurements at ReA12 Hiro IWASAKI (NSCL/MSU) 7/12/2014Recoil Separator for ReA12 workshop1.
Proton and Two-Proton Decay of a High-Spin Isomer in 94 Ag Ernst ROECKL GSI Darmstadt and Warsaw University.
S.N.Nakamura, Tohoku Univ. JLab HallC Meeting 22/Jan/2010, JLab.
Production of elements near the N = 126 shell in hot fusion- evaporation reactions with 48 Ca, 50 Ti, and 54 Cr projectiles on lanthanide targets Dmitriy.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Stephane Grévy : October 8, 2012 Unveiling the intruder deformed state in 34 Si 20 and few words about N=28 IFIN - Bucharest F. Rotaru.
Nuclear structure around 100 Sn Darek Seweryniak, ANL.
Nuclear Structure studies using fast radioactive beams J. Gerl SNP2008 July Ohio University, Athens Ohio USA –The RISING experiment –Relativistic.
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
不安定核物理と理研 RI * ビームファクトリー 本林 透(理研仁科加速器研究センター) * radioactive isotope - first realization of next-generation exotic beam facilities.
GT (  ) : Important weak process  decay : absolute B(GT), limited to low-lying state CE reactions : relative B(GT), highly Ex region  decay  isospin.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
Study of unbound 19 Ne states via the proton transfer reaction 2 H( 18 F,  + 15 O)n HRIBF Workshop – Nuclear Measurements for Astrophysics C.R. Brune,
 2-proton emission  experimental set-up  decay results  2p emission from 45 Fe  perspectives Jérôme Giovinazzo – CEN Bordeaux-Gradignan – France PROCON’03.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
Rare Isotope Spectroscopic INvestigation at GSI. abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1.
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
E. Sahin, G. de Angelis Breaking of the Isospin Symmetry and CED in the A  70 mass region: the T z =-1 70 Kr.
The Coulomb dissociation of 14Be 宋玉收 哈尔滨工程大学 上海.
Search for QFS anomaly in pd - breakup reaction below E p = 19 MeV Shuntaro Kimura, K. Sagara, S. Kuroita, T. Yabe, M. Okamoto, K. Ishibashi, T. Tamura,
Observation of new neutron-deficient multinucleon transfer reactions
Coulomb breakup of 22 C and 31 Ne N. Kobayashi Department of Physics, Tokyo Institute of Technology.
March, 2006SERC Course1  Z>92 (Heaviest Element in Nature) and upto Z= achieved by n irradiation or p,  and d bombardment in Cyclotron ( )
Physics at the extremes with large gamma-ray arrays Lecture 3 Robert V. F. Janssens The 14 th CNS International Summer School CNSSS15 Tokyo, August 26.
Spectroscopy studies around 78 Ni and beyond N=50 via transfer and Coulomb excitation reactions J. J. Valiente Dobón (INFN-LNL, Padova,Italy) A. Gadea.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
CNS, Univ. of Tokyo MATSUSHITA Masafumi ガンマ線核分光で探る不安定核の殻構造進化 Sep 第3回 RIBF 討論会.
Investigating the strength of the N = 34 subshell closure in 54Ca
(g, n) (g, p) experiment at SAMURAI
for the LNL-Ganil collaboration
Yuliya Aksyutina for the LAND-R3B collaboration Motivation
First results from IS468 and further investigation of in-trap decay of 62Mn First results from 2008 ; Problems and questions ; Further investigations ;
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Nuclear excitations in nucleon removal processes
Probing core polarization around 78Ni:
In-beam and isomer spectroscopy in the third island of inversion at EXOGAM+VAMOS E.Clément (GANIL)
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Isospin Symmetry test on the semimagic 44Cr
H.J. Wollersheim, P. Doornenbal, J. Gerl
Study of the resonance states in 27P by using
Rare Isotope Spectroscopic INvestigation at GSI
Naohito Iwasa Dept. Phys., Tohoku Univ.
Rare Isotope Spectroscopic INvestigation at GSI
Production Cross-Sections of Radionuclides in Proton- and Heavy Ion-Induced Reactions Strahinja Lukić.
Coincidence measurement of heavy ion and protons with SAMURAI
Catalin Borcea IFIN-HH INPC 2019, Glasgow, United Kingdom
Rare Isotope Spectroscopic INvestigation at GSI
Probing correlations by use of two-nucleon removal
Presentation transcript:

Search for unbound excited states of proton rich nuclei SAMURAI WS@RIKEN 9-10 March 2011 Search for unbound excited states of proton rich nuclei Naohito IWASA Department of Physics, Tohoku University

Motivation E(21+) and B(E2) in even-even nuclei 46Fe 48Fe E(21+) and B(E2) in even-even nuclei collectivity/shell structure Systematical studies  magicity disappearance around 32Mg-32Ne → new magic number N=14, 16 in 22,24O  B(E2) anomaly of 16,18C Isotope E(2+) B(E2;↑) 42Cr 44Cr 46Cr 0.892 900±10 40Ti 42Ti 1.55 870±250 44Ti 1.08 650±160 preliminary 36Ca 3.02 (71±13) 36Ca 3.02 38Ca 2.21 96±21 40Ca 3.90 99±17 42Ca 1.52 420±30 32Ar 1.82 266±68 34Ar 2.09 240±40 36Ar 1.97 300±30 38Ar 2.17 130±10 40Ar 1.46 330±40 24Si, 28S (Tz=-2): small B(E2)   0gs+→21+: neutrons plays important role   subshell closure (Z=14,16) effect?   E(21+) are not high: not magic. 36Ca: B(E2): smallest in Ca isotopes   E(21+): 0.3MeV smaller than that of mirror nucleus 36S. 28S 1.51 28S 1.51 (102±16) 30S 2.21 324±41 32S 2.23 300±13 34S 2.13 212±12 36S 3.29 104±28 38S 1.29 235±30 22Si 24Si 1.88 (60±20) 24Si 1.88 (60±20) 26Si 1.80 356±34 28Si 1.78 326±12 30Si 2.24 215±10 32Si 1.94 113±33 34Si 3.33 85±33 36Si 1.40 190±60 20Mg 1.61 177±32 22Mg 1.25 370±130 24Mg 1.37 432±11 26Mg 1.81 305±13 28Mg 1.47 350±50 30Mg 1.48 295±26 32Mg 0.885 454±78 34Mg 0.656 631±126 18Ne 1.89 176±30 20Ne 1.63 340±30 22Ne 1.28 230±10 24Ne 1.98 170±60 26Ne 2.02 228±41 28Ne 1.32 132±23 30Ne 0.79 32Ne 0.72 16O 6.92 41±4 18O 1.982 45±2 20O 1.67 28±2 22O 3.17 21±8 24O 4.72 14C 7.01 18±3 16C 1.77 2.7±0.7 18C 1.62 4.3±1.0 20C 1.59 22C

Proposals Search for unbound excited states in Tz=-3 nuclei. 46Fe 48Fe Search for unbound excited states in Tz=-3 nuclei. Coulomb dissociation of 22Si Search for 01+ and 21+ states in 34Ca using 2n-knockout reaction of 36Ca Proton inelastic scattering of 42Cr, 48Fe Isotope E(2+) B(E2;↑) 42Cr 44Cr 46Cr 0.892 900±10 40Ti 42Ti 1.55 870±250 44Ti 1.08 650±160 34Ca 36Ca 3.02 (71±13) 38Ca 2.21 96±21 40Ca 3.90 99±17 42Ca 1.52 420±30 32Ar 1.82 266±68 34Ar 2.09 240±40 36Ar 1.97 300±30 38Ar 2.17 130±10 40Ar 1.46 330±40 28S 1.51 (102±16) 30S 2.21 324±41 32S 2.23 300±13 34S 2.13 212±12 36S 3.29 104±28 38S 1.29 235±30 22Si 24Si 1.88 (60±20) 26Si 1.80 356±34 28Si 1.78 326±12 30Si 2.24 215±10 32Si 1.94 113±33 34Si 3.33 85±33 36Si 1.40 190±60 20Mg 1.61 177±32 22Mg 1.25 370±130 24Mg 1.37 432±11 26Mg 1.81 305±13 28Mg 1.47 350±50 30Mg 1.48 295±26 32Mg 0.885 454±78 34Mg 0.656 631±126 18Ne 1.89 176±30 20Ne 1.63 340±30 22Ne 1.28 230±10 24Ne 1.98 170±60 26Ne 2.02 228±41 28Ne 1.32 132±23 30Ne 0.79 32Ne 0.72 16O 6.92 41±4 18O 1.982 45±2 20O 1.67 28±2 22O 3.17 21±8 24O 4.72 14C 7.01 18±3 16C 1.77 2.7±0.7 18C 1.62 4.3±1.0 20C 1.59 22C

Coulomb dissociation of 22Si B(E2↑)~200e2fm4: 16O+6p B(E2↑)<100e2fm4: Z=14 subshell closure is significant To determination of E(21+) and B(E2) in 22Si, we propose Coulomb dissociation experiment. Z=14(subshell), N=8(magic) Sp=1.2 MeV No excited states are known Mirror 22O: E(21+)=3.17MeV N=14 in 22O: new magic number. 22Si 3.xx ? ??? 24Si 1.88 (60±20) 24Si 1.88 60±20? 26Si 1.80 356±34 28Si 1.78 326±12 30Si 2.24 215±10 32Si 1.94 113±33 34Si 3.33 85±33 36Si 1.40 190±60 g Doppler corrected g energy energy of excited states Excitation 20Mg invariant mass 22Si breakup virtual photon 2protons charged particles Pb

Coulomb dissociation of 22Si If excited states in 21Al exist between 1.4~2.0MeV, 18Ne+4p channel 3.17 2+ 2.55 2.25 19Na+3p 18Ne+4p Coulex 1.5 1.2 21Al+p -0.1 0+ 20Mg+2p 22Si 22O Measurement of all the channel → excitation cross section can be measured

Proposals Search for unbound excited states in Tz=-3 nuclei. 46Fe 48Fe Search for unbound excited states in Tz=-3 nuclei. Coulomb dissociation of 22Si Search for 01+ and 21+ states in 34Ca using 2n-knockout reaction of 36Ca Proton inelastic scattering of 42Cr, 48Fe Isotope E(2+) B(E2;↑) 42Cr 44Cr 46Cr 0.892 900±10 40Ti 42Ti 1.55 870±250 44Ti 1.08 650±160 34Ca 36Ca 3.02 (71±13) 38Ca 2.21 96±21 40Ca 3.90 99±17 42Ca 1.52 420±30 32Ar 1.82 266±68 34Ar 2.09 240±40 36Ar 1.97 300±30 38Ar 2.17 130±10 40Ar 1.46 330±40 28S 1.51 (102±16) 30S 2.21 324±41 32S 2.23 300±13 34S 2.13 212±12 36S 3.29 104±28 38S 1.29 235±30 22Si 24Si 1.88 60±20? 26Si 1.80 356±34 28Si 1.78 326±12 30Si 2.24 215±10 32Si 1.94 113±33 34Si 3.33 85±33 36Si 1.40 190±60 20Mg 1.61 177±32 22Mg 1.25 370±130 24Mg 1.37 432±11 26Mg 1.81 305±13 28Mg 1.47 350±50 30Mg 1.48 295±26 32Mg 0.885 454±78 34Mg 0.656 631±126 18Ne 1.89 176±30 20Ne 1.63 340±30 22Ne 1.28 230±10 24Ne 1.98 170±60 26Ne 2.02 228±41 28Ne 1.32 132±23 30Ne 0.79 32Ne 0.72 16O 6.92 41±4 18O 1.982 45±2 20O 1.67 28±2 22O 3.17 21±8 24O 4.72 14C 7.01 18±3 16C 1.77 2.7±0.7 18C 1.62 4.3±1.0 20C 1.59 22C

Search for 01+ and 21+ states in 34Ca MED=E(2+;Tz=-T)-E(2+;Tz=T) Standard shell model: zero MED exp. : |MED|≦0.1MeV extremely large MED of 14O, 36Ca 21+ states are unbound 36Ca The extremely large MED can be reproduced by shell model calc. with the sd shell isospin symmetric interaction USD using experimental proton and neutron SPE from the  A = 17, T = 1/2 isospin doublet. 36Ca 14O The new shell model predicted that the island of inversion in proton rich region may start at N = 14 in 34Ca. Is Isospin violated ? Experimental determination of E(2+) and B(E2) of 34Ca are desired. P. Doornenbal et al., PLB 647 (2007) 237 Small correction of Z=14, N=14 gap P. Doornenbal et al., PLB 647 (2007) 237

Search for 01+ and 21+ states in 34Ca Mass formula (AUDI1995) g.s. of 34Ca is bound, but 34Ca is not found yet. Upper limit of the half life was measured to be 35ns at GANIL. 34Ca might have diproton radioactivity?? Coulomb diss. meth. cannot be used. x B(E2) We propose to measure the mass and E(21+) of 34Ca using 2n knockout reaction of 36Ca. 0.9 33K+p -0.7 34Ca ? 32Ar+2p 32Ar 2n knockout 34Ca 36Ca 36Ca breakup 9Be 2 protons 2 neutrons

Search for 01+ and 21+ states in 34Ca 36Ca + 9Be →34Ca*(gs, 2+)→32Ar+2p Mass of 34Ca can be determined. Mass of 33K is expected to be determined. E(21+) is expected to be measured. 9Be(36Ca,34Ca) 2+ g? 0.9 33K+p 0+ -0.7 34Ca not found seems to be unbound 2 proton decay 32Ar+2p E(21+) =~3MeV→34Ca is not in island of inversion ~1MeV→34Ca is in island of inversion

Proposals Search for unbound excited states in Tz=-3 nuclei. 46Fe 48Fe Search for unbound excited states in Tz=-3 nuclei. Coulomb dissociation of 22Si Search for 01+ and 21+ states in 34Ca using 2n-knockout reaction of 36Ca Proton inelastic scattering of 42Cr, 48Fe Isotope E(2+) B(E2;↑) 42Cr 44Cr 46Cr 0.892 900±10 40Ti 42Ti 1.55 870±250 44Ti 1.08 650±160 36Ca 3.02 (71±13) 38Ca 2.21 96±21 40Ca 3.90 99±17 42Ca 1.52 420±30 32Ar 1.82 266±68 34Ar 2.09 240±40 36Ar 1.97 300±30 38Ar 2.17 130±10 40Ar 1.46 330±40 28S 1.51 (102±16) 30S 2.21 324±41 32S 2.23 300±13 34S 2.13 212±12 36S 3.29 104±28 38S 1.29 235±30 22Si 24Si 1.88 60±20? 26Si 1.80 356±34 28Si 1.78 326±12 30Si 2.24 215±10 32Si 1.94 113±33 34Si 3.33 85±33 36Si 1.40 190±60 20Mg 1.61 177±32 22Mg 1.25 370±130 24Mg 1.37 432±11 26Mg 1.81 305±13 28Mg 1.47 350±50 30Mg 1.48 295±26 32Mg 0.885 454±78 34Mg 0.656 631±126 18Ne 1.89 176±30 20Ne 1.63 340±30 22Ne 1.28 230±10 24Ne 1.98 170±60 26Ne 2.02 228±41 28Ne 1.32 132±23 30Ne 0.79 32Ne 0.72 16O 6.92 41±4 18O 1.982 45±2 20O 1.67 28±2 22O 3.17 21±8 24O 4.72 14C 7.01 18±3 16C 1.77 2.7±0.7 18C 1.62 4.3±1.0 20C 1.59 22C

Search for 21+ states in 42Cr, 46Fe 42Cr: Z=24, N=18 40Ca+4p-2n Sp=1.11MeV(mass formula) No excited states are known. Mirror 42Ar: E(2+)=1.21MeV 46Fe: Z=26, N=20(magic) 40Ca+6 protons configuration? Sp=1.42MeV (mass formula) No excited states are known. Mirror 46Ca: E(2+)=1.35MeV 2.48 2+ 2.57 4+ (3-,4+) 2.41 2.42 0+ (1.42) 1.21 1.35 (1.11) 2+ 2+ 45Mn+p 41V+p 0.360 40Ti+2p 0+ 44Cr+2p 0+ 42Cr 42Ar 46Fe 46Ca

Experimental Setup High resolution mode of SAMURAI. DALI 2 for g measurement Pb, Be Liq. H2targets 22Si, 36Ca,… 3×2 SSD (xyu, xyv) ICF, FDC, plastic PDC, plastic 2 protons 20Mg, 32Ar,… SSD should be in vac. chamber. →breakup events and breakup positions are identified Focus: good mass res. Less influence of MS Target chamber, SSD and SSD chamber should be constructed.

Yield estimation 22Si @250AMeV 100cps from 100pnA 36Ar @400AMeV 100cps from 33pnA 28Si @400AMeV Assuming σCx~10mb at 250AMeV 34Ca @ 250AMeV 3kcps 36Ca from 40pnA 40Ca @400AMeV purity ~20% limit: 2kcps 2n knockout cross section: 0.1mb target 100mg/cm2 thick 9Be efficiency: 40% (Erel=3~4MeV) 48events/day~330 events/week Target 200mg/cm2 thick Pb 22Si+Pb→20Mg+2p coincidence efficiency 40% (Erel~3MeV, rough*) 20 events/day ~ 140 events/week *We use simulation results of 7Be+p coincidence efficiency of KaoS at GSI.

Yield estimation for 42Cr, 46Fe 42Cr @250AMeV 0.04cps from 30pnA 84Kr @345AMeV 10 times higher intensity beam is available*, (p,p’) measurement is possible. 0.4cps 42Cr beam Target 200mg/cm2 Liq. H2 σ= 5mb, 80% coin.eff . 16 events/d = 116 events/week g eff.: 20% 29 events/week 46Fe@250AMeV 0.007cps from 30pnA 84Kr @345AMeV 60 times higher intensity beam is available*, (p,p’) measurement is possible. 0.4cps 46Fe beam Target 200mg/cm2 Liq. H2 σ= 5mb, 80% coin. eff. 16 events/d = 116 events/week g eff.: 20% 29 events/week * 1pmA 84Kr beam will be available. For B(E2) measurement, intensity of several ten particle/sec is necessary.

Summary Coulomb dissociation reaction, knockout reaction and proton inelastic scattering are powerful tool to study collectivity and nuclear structure. Coulomb dissociation of 22Si into 20Mg+2p may provide information on Z=14 subshell closure near the drip line. From an experiments of 2n knockout reaction of 36Ca, mass and E(2+) of 34Ca are expected to be determined. The question why 34Ca is not found is expected to be solved. Proton inelastic scattering experiments of 42Cr and 46Fe can be performed when high-intensity 84Kr beam is available.