Special Angle Values.

Slides:



Advertisements
Similar presentations
Classifying Triangles by sides and angles Beat the Computer Drill.
Advertisements

Trig Graphs. y = sin x y = cos x y = tan x y = sin x + 2.
1 Special Angle Values. 2 Directions A slide will appear showing a trig function with a special angle. Work out the answer Hit the down arrow to check.
1 Special Angle Values. 2 Directions A slide will appear showing a trig function with a special angle. Work out the answer Hit the down arrow to check.
1 Special Angle Values DEGREES. 2 Directions A slide will appear showing a trig function with a special angle. Say the value aloud before the computer.
Find the period of the function y = 4 sin x
Trigonometry Review Game. Do not use a calculator on any of these questions until specified otherwise.
(1) Sin, Cos or Tan? x 7 35 o S H O C H A T A O Answer: Tan You know the adjacent and want the opposite.
5.2 Trigonometric Ratios in Right Triangles. A triangle in which one angle is a right angle is called a right triangle. The side opposite the right angle.
Decimals to Fractions In Order
Pythagorean Theorem Algebra 2/Trig Name __________________________
Classifying Triangles by sides and angles
Part I Finding Values for Trig Functions
Beat the Computer Drill
Degrees Radians radians = degrees degrees = radians.
The unit circle.
Finding sin, cos, and tan.
Which of the following statements is true for this triangle?
Graphs of Trigonometric Functions
Trigonometric Function: The Unit circle
Fractions to Decimals In Order
7.7 Solve Right Triangles Obj: Students will be able to use trig ratios and their inverses to solve right triangles.
Sum and Difference Identities for the Sin Function
Graphing Trigonometry Functions
Becky Afghani, LBUSD Math Curriculum Office, 2004
Becky Afghani, LBUSD Math Curriculum Office, 2004
7.2 – Trigonometric Integrals
FLASH! Fredda Wyatt 01/2009.
Find sin 2x, cos 2x, and tan 2x from the given information: {image} Select the correct answer:
Trig Functions: the unit circle approach
Product and Quotient Rules and Higher Order Derivatives
Trigonometric Functions of Acute Angles
All Integer Multiplication Facts to 12
Trigonometric Functions
Last time… Homework questions?.
47.75⁰ Convert to radians: 230⁰.
All Integer Addition Facts to +/- 10
Unit 7B Review.
Warm-Up: Give the exact values of the following
Aim: What are the double angle and half angle trig identities?
Identifying Common Graphs Beat the Computer Drill
Examples Double Angle Formulas
Warm-up: Find the exact values of the other 5 trigonometric functions given sin= 3 2 with 0 <  < 90 CW: Right Triangle Trig.
Half-Angle Identities
Trig Ratios C 5 2 A M 4. If C = 20º, then cos C is equal to:
Intro to trig review.
©G Dear 2010 – Not to be sold/Free to use
Identifying Common Graphs Beat the Computer Drill
All Integer Division Facts to 12
Beat the Computer! Squares.
Build and Use Unit Circle
Beat the Computer Drill
Trig Functions and Graphs
Sec 6.2 Trigonometry of Right Triangles
5-4: Trig Identities Name:_________________ Hour: ________
An Introduction to Trig Identities
Becky Afghani, LBUSD Math Curriculum Office, 2004
Unit 3: Right Triangle Trigonometry
x x HW 13: Inverse Trig Functions HW 13: Inverse Trig Functions
Trigonometry for Angle
Becky Afghani, LBUSD Math Curriculum Office, 2004
Becky Afghani, LBUSD Math Curriculum Office, 2004
Review for test Front side ( Side with name) : Odds only Back side: 1-17 odd, and 27.
Becky Afghani, LBUSD Math Curriculum Office, 2004
Becky Afghani, LBUSD Math Curriculum Office, 2004
Academy Algebra II THE UNIT CIRCLE.
5-3 The Unit Circle.
Quick Integral Speed Quiz.
Becky Afghani, LBUSD Math Curriculum Office, 2004
Given A unit circle with radius = 1, center point at (0,0)
Presentation transcript:

Special Angle Values

Directions A slide will appear showing a trig function with a special angle. Say the value aloud before the computer can answer (5 sec.).

sin 60º=

tan 240º=

cos 210º=

cos 45º=

sin 120º=

tan 225º=

cos 150º=

cos 90º=

tan 180º=

tan 30º=

sin 300º=

tan 150º=

cos 0º=

tan 90º=

sin 240º=

cos 180º=

cos 240º=

cos 60º=

sin 210º=

tan 210º=

sin 225º=

sin 150º=

cos 330º=

tan 0º=

sin 45º=

cos 225º=

sin 180º=

sin 90º=

cos 300º=

tan 45º=

sin 330º=

cos 360º=

tan 120º=

cos135 º=

tan 60º=

cos 30º=

tan 315º=

sin270º=

sin 360º=

cos 315º=

tan 300º=

sin 0º=

sin 315º=

sin 30º=

tan 360º=

cos 270º=

sin 135º=

tan 135º=

tan 270º=

cos 120º=

tan 330º=