The proton radius from atomic/molecular spectroscopy : Current status and perspectives Jean-Philippe Karr 1Laboratoire Kastler Brossel (UPMC, ENS, CNRS,

Slides:



Advertisements
Similar presentations
Vibrational Spectroscopy of Cold Molecular Ions Ncamiso Khanyile Ken Brown Lab School of Chemistry and Biochemistry June 2014.
Advertisements

The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut.
The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut.
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
1S-2S transition frequency measurements in atomic hydrogen N. Kolachevsky MPQ.
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks.
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
55. Jahrestagung der ÖPG, September 2005 Pionischer Wasserstoff: Präzisionsmessungen zur starken Wechselwirkung J. Marton Stefan Meyer Institut der ÖAW.
Jan W. Thomsen, G. K. Campbell, A. D. Ludlow, S. Blatt, M. Swallows, T. Zelevinsky, M. M. Boyd, M. Martin, T. Nicholson and J. Ye JILA, NIST and University.
Jinjun Liu,1 Edcel J. Salumbides,2
Stefan Truppe MEASUREMENT OF THE LOWEST MILLIMETER- WAVE TRANSITION FREQUENCY OF THE CH RADICAL.
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
Precise Measurement of Vibrational Transition Frequency of Optically Trapped molecules NICT Masatoshi Kajita TMU G. Gopakumar, M. Abe, M. Hada We propose.
Determination of fundamental constants using laser cooled molecular ions.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Helium Spectroscopy Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**,
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
INTRODUCTION Characteristics of Thermal Radiation Thermal Radiation Spectrum Two Points of View Two Distinctive Modes of Radiation Physical Mechanism of.
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Columbus, 18 June 2013 International Symposium on Molecular Spectroscopy 68 th Meeting - June 17-21, 2013, Ohio State University Determination of the Boltzmann.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
High-accuracy calculations in H 2 + Jean-Philippe Karr, Laurent Hilico Laboratoire Kastler Brossel (UPMC/ENS) Université d’Evry Val d’Essonne Vladimir.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
Precision tests of bound-state QED: Muonium HFS etc Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
Precision test of bound-state QED and the fine structure constant  Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
Experimental Measurements of Collisional Cross Sections and Rates at Astrophysical and Quantum Collisional Temperatures Frank C. De Lucia Department of.
International collaboration CREMA - Charge Radius Experiments with Muonic Atoms General goals:  Laser spectroscopy of muonic atoms  Determination of.
The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut.
Parity nonconservation in the 6s 2 1 S 0 – 6s5d 3 D 1 transition in Atomic Ytterbium: status of the Berkeley experiments K. Tsigutkin, J. Stalnaker, V.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
ISMS 2015 Urbana-Champaign, 22 June 2015 Wim Ubachs VU University Amsterdam Physics beyond the Standard Model from Molecular Hydrogen.
Tze-Wei Liu Y-C Hsu & Wang-Yau Cheng
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 1 Precision Studies on Strong Interaction in Pionic Hydrogen J. Marton Stefan Meyer Institut (SMI)
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
QED, Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Coulomb crystallization of highly charged ions Lisa Schmöger (Max-Planck-Institut für Kernphysik / Physikalisch-Technische Bundesanstalt) COOL’15 Workshop.
The gerade Rydberg states of molecular hydrogen Daniel Sprecher, 1 Christian Jungen, 2 and Frédéric Merkt 1 1 Laboratory of Physical Chemistry, ETH Zurich,
Capture, sympathetic cooling and ground state cooling of H + ions for the project Laurent Hilico Jean-Philippe Karr Albane Douillet Nicolas Sillitoe Johannes.
Recent progress in determination of fundamental constants (CODATA and afterwards ) Savely G Karshenboim Pulkovo observatory (ГАО) (St. Petersburg)
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Nuclear recoil in the Lamb shift of hydrogen-like atoms
The bound-electron g factor in light ions
Review on the fine-structure constant and the g-2 electron
Small fermionic systems : the common methods and challenges
R.K. Altmann, L.S. Dreissen, S. Galtier and K.S.E. Eikema
Measurement of the Proton Radius
Measurement Science Science et étalons
Resonant dipole-dipole energy transfer
Characterisation and Control of Cold Chiral Compounds
Photon counter with Rydberg atoms
Muon Spectroscopy WS, Villigen Nuclear charge radii measurements by collinear laser spectroscopy and Penning trap g-factor experiments: The need for.
Preparing antihydrogen at rest for the free fall in
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
Curtin University, Perth, Australia
Microwaves for Qubits on Helium
A molecular fountain Cunfeng Cheng
武汉物数所理论交叉学术交流系列报告 (第一三四期)
Val Kostroun and Bruce Dunham
SYMPATHETIC SIDEBAND COOLING FOR MOLECULAR SPECTROSCOPY
Hot Cold Molecules: Collisions at Astrophysical Temperatures
理论与交叉学术交流系列报告(一四一) Vladimir I. Korobov
Physics beyond the Standard Model from molecular hydrogen; Part I
Are there three-body forces between point particles ?
Presentation transcript:

The proton radius from atomic/molecular spectroscopy : Current status and perspectives Jean-Philippe Karr 1Laboratoire Kastler Brossel (UPMC, ENS, CNRS, Collège de France) 2Université d’Evry – Val d’Essonne 5th French-Ukrainian workshop Instrumentation developments for high energy physics LAL, Orsay, 7 November 2017

Metrology at Lab. Kastler Brossel 4 research axes Quantum gases Atoms and light in dense or complex media Quantum optics and quantum information Test of fundamental interactions and metrology International collaborations H atom spectroscopy (F. Nez) 2 research teams Metrology of simple systems and fundamental tests Metrology of trapped ions H2+ spectroscopy (L. Hilico) HMI theory (JPK) Atom interferometry (S. Guellati, P. Cladé) Heavy ions and exotic ions (P. Indelicato) CREMA (Muonic Atom spectroscopy) GBAR (Gravitational Behaviour of Anti- hydrogen at Rest)

Outline I. Introduction Atomic energy levels, and the proton radius II. Current status of the “puzzle” After recent measurements in hydrogen III. New experiments Focus on the hydrogen molecular ions

Finite-size shift of atomic energy levels The proton radius is defined as : Sachs electric form factor p Modification of the Coulomb potential w.r.t. a point-like proton: Leading order: In atomic physics: ~ ~

Finite-size shift of atomic energy levels Shift of an atomic bound state: Hydrogen-like atom, nl state: Orders of magnitude Hydrogen atom, 1S state: 5.10-10 n1S-2S Exp. accuracy 1% on Muonic hydrogen, 2S state: 2% of Exp. / theor. accuracy 5.10-4 on

Hydrogen atom energy levels Main dependences on fundamental constants Schrödinger Relativistic and QED corr. Finite nuclear size corr. and determined by other experiments 1S-2S 243 nm 1S-3S 205 nm 2S-4P 486 nm 2 measurements required to determine and A single narrow transition: 1S-2S (Dn = 1.3 Hz) measured with high accuracy. Other transitions: natural width ~ MHz. Each measurement, combined with 1S-2S, yields a correlated pair .

The proton-radius puzzle µp spectroscopy H spectroscopy e-p scattering: J. Arrington and I. Sick., J. Phys. Chem. Ref. Data 44, 031204 (2015)  100 kHz on CODATA 2014: P.J. Mohr, D.B. Newell, and B.N. Taylor, Rev. Mod. Phys. 88, 035009 (2016)

Muonic hydrogen spectroscopy at PSI l = 6 µm

Muonic hydrogen spectroscopy at PSI Dnstat = 0.7 GHz Linewidth: 18 GHz (t2P = 8.5 ps) R. Pohl et al., Nature 466, 213 (2010) A. Antognini et al., Science 339, 417 (2013)

H atom spectroscopy

1S-2S transition (MPQ Garching) f1S-2S = 2 466 061 413 187 035 (10) Hz Linewidth: 2 kHz C.G. Parthey et al., PRL 107, 203001 (2011) f1S-2S = 2 466 061 413 187 018 (11) Hz A. Matveev et al., PRL 110, 230801 (2013)

Challenges in high-resolution spectroscopy of H Determine the center of a line to a small fraction (10-3-10-4) of its width High statistics Precise understanding of lineshape and systematic effects: - 1st or 2nd-order Doppler effect: velocity distribution in atomic beam - AC Stark shift (especially for two-photon transitions) - Pressure (collision) shift - Quantum interference effect - …

New! 2S-4P transition (MPQ Garching) - Cold (5.8 K) H(2S) atoms - Single hyperfine level populated:2S1/2 F=0 Natural linewidth: 12.9 MHz + Doppler broadening, power broadening Linewidth: 20 MHz

New! 2S-4P transition (MPQ Garching) Quantum interference effect f 2S-4P = 616 520 931 626.8(2.3) kHz Df ~ 10-4 G ! Main source of uncertainty: 1st-order Doppler shift A. Beyer et al., Science 358, 79 (2017)

Preliminary! 1S-3S transition (LKB Paris) Frequency sum Nd:YVO4 Laser FP Cavity Nd:YAG Laser Ti:Sa Laser FP Cavity 1064 nm Ref. cavity FPR Laser diode/ Rb Frequency comb 3S 1S 2P 205 nm 656 nm

Preliminary! 1S-3S transition (LKB Paris) Pressure shift Linewidth: 1.5 MHz Corrected from light shift f 1S-3S = 2 922 743 278 xxx.x (2.4) kHz S. Galtier et al., J. Phys. Chem. Ref. Data 44, 031201 (2015) QI effect: H. Fleurbaey, F. Biraben, L. Julien, JPK, F. Nez, PRA 95, 052503 (2017) H. Fleurbaey et al., in preparation Next step : cold (77K) H beam

Overview 2S-4P 1S-3S 2S-4P 1S-3S

What to do now ? “To summarize, the possibilities are: 1. The electronic hydrogen experiments are almost, but not quite, as accurate as stated. 2. The QED calculations in µp are almost, but not quite, as accurate as stated. 3. The two-photon exchange term that depends on proton polarizability has not been correctly evaluated. 4. The electron and the muon really do have different interactions with the proton so there is physics beyond the Standard Model. None of these possibilities seem very likely, but all must be pursued.” R. Pohl et al., Annu. Rev. Nucl. Part. Sci. 63, 175 (2013) C.E. Carlson, Progr. Part. Nucl. Phys. 82, 59 (2015) “Beyer et al. do not claim to have solved the proton-size puzzle. After all, it is only one measurement, and the data analysis was very complicated. Moreover, one would need to understand why other measurements in hydrogen are so far off or, possibly, exhibit a systematic shift in the same direction. There is presently no explanation for that. Also, the proton size deduced from electron-proton scattering disagrees. Thus, more measurements are what is needed.” W. Vassen, Science (Pespective) 358, 39 (2017)

Spectroscopy projects Hydrogen-like systems 2S-2P in H (YU Toronto)  1S-2S in He+ (VU Amsterdam + MPQ Garching)  Rydberg states in High-Z ions (NIST Gaithersburg)  electronic muonic 2S-2P in µHe+ (PSI)  1S-2S in Positronium e+e- (ETH Zürich + UC London)  1S-2S in Muonium µ+e- (PSI + ETH Zürich)  µ-specific forces ? leptonic One-electron molecules  H2+ / HD+ (VU Amsterdam + Düsseldorf + LKB Paris) D / µD discrepancy Two-electron atoms He (VU Amsterdam + Hefei) Two-electron molecules  H2 / HD (VU Amsterdam + ETH Zürich) Muonic Li, Be … (JGU Mainz + PSI)

3He/4He isotope shift (preliminary) Other nuclei Deuteron radius 3He/4He isotope shift (preliminary) 2012 1995 2011 Another >5s discrepancy ?

Hydrogen molecular ions 1ssg Dependence of ro-vibrational transition frequencies on fundamental constants : Energy [a.u] H2+ Internuclear distance [Å] 1. Strong dependence on :  Determination of and by laser spectroscopy of H2+/HD+ W.H. Wing, G.A. Ruff, W.E. Lamb Jr., J.J. Spezeski, PRL 36, 1488 (1976) 2. All ro-vibrational transitions in 1ssg electronic state are very narrow  Measuring several transitions in H2+/HD+ could provide a reliable determination of , , , cross-checking H/D results and shedding light on the proton-radius puzzle. J.Ph. Karr, L. Hilico, J.CJ. Koelemeij, V.I. Korobov, PRA 94, 050501(R) (2016)

V.I. Korobov, L. Hilico, J.-Ph. Karr, PRL 118, 233001 (2017) Status of theory H2+ (v = 0, L=0)  (v’=1, L’=0) interval in kHz 1990 2000 2010 2020 10-12 10-11 10-10 10-9 10-8 10-7 Objective Current experiments 2014 2017 (11) H atom theory Theoretical uncertainty Uncert. on 7.6 10-12 Discrepancies on and V.I. Korobov, L. Hilico, J.-Ph. Karr, PRL 118, 233001 (2017) Further improvement by a factor of 2-3 would allow discriminating between conflicting measurements of from a well-chosen set of ro-vibrational transitions.

Experimental state of art One-photon ro-vibrational transitions in HD+ Linear RF trap Sympathetic cooling by laser-cooled Be+ (T~10 mK) Detection by selective dissociation of the excited state (REMPD) Measurement of HD+ ion number by motional excitation 313 nm 750 Be+ 40-85 HD+ Image: J.C.J. Koelemeij (VU Amsterdam) HD+ v = 0 → 8 transition Main limitation: Doppler broadening Fractional HD+ loss J.Biesheuvel, J.-Ph. Karr, L. Hilico, K.S.E. Eikema, W. Ubachs, J.C.J. Koelemeij, Nature Comm. 7, 10385 (2016) n – 383 407 177.150 [MHz]

Doppler-free two-photon transitions Experimental state of art 1 3 -4 -3 -2 -1 2 4 Theory – Experiment [ppb] Düsseldorf 2007 v = 0 → 4 Düsseldorf 2012 v = 0 → 1 Amsterdam 2016 v = 0 → 8  Determination of with 2.5 ppb accuracy S. Patra, J.-Ph. Karr, L. Hilico, M. Germann, V.I. Korobov, J.C.J. Koelemeij, arXiv:1710.11537, to appear in J. Phys. B Internuclear distance [Å] 1ssg Energy [a.u] H2+ v = 0 → 1 LKB l = 9.17 µm Internuclear distance [Å] 1ss l1 = 1442 nm l2 = 1445 nm HD+ v = 0 → 9 Amsterdam VU Next step: Doppler-free two-photon transitions Goal accuracy : 10-12 24

H2+ two-photon spectroscopy setup 213nm (photodissociation) Linear ion trap H2 313nm (cooling) + 303 nm (REMPI) 9.17µm (spectroscopy) Crystal of laser-cooled Be+

Thomas Louvradoux (PhD) Acknowledgements Albane Douillet Nicolas Sillitoe (PhD) Johannes Heinrich (PhD) Laurent Hilico Thomas Louvradoux (PhD) Vladimir Korobov (JINR, Dubna, Russia) Amsterdam VU Sayan Patra Matthias Germann Juriaan Biesheuvel Frank Cozijn Kjeld Eikema Wim Ubachs Jeroen Koelemeij

Finite-size corrections in muonic hydrogen In addition to the leading term, higher-order QED corrections involving the proton structure have to be considered. µ Two-photon exchange : - elastic - inelastic : proton polarizability - subtraction of QED correction to proton radius

Muonic hydrogen spectroscopy at PSI

2S-nS(D) transitions (LKB Paris) Example: 2S1/2-8S1/2 f (2S1/2-8S1/2) = 770 649 350 012.0(8.6) kHz (+ 4 other transitions) Linewidth: 770 kHz Main source of uncertainty: AC Stark shift B. De Beauvoir et al., PRL 78, 440 (1997) and EPJD 12, 61 (2000) C. Schow et al., PRL 82, 4960 (1999).