VARENNA 2007 Introduction to 5D-Optics for Space-Time Sensors Introduction to 5D-Optics for Space-Time Sensors Christian J. Bordé A synthesis between optical.

Slides:



Advertisements
Similar presentations
Matter waves 1 Show that the wavelength of an electron can be expressed as where E is the energy in volts and  in nm.
Advertisements

Optics, Eugene Hecht, Chpt. 8
1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Physics Lecture Resources
Femtosecond lasers István Robel
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Lecture 4. High-gain FELs X-Ray Free Electron Lasers Igor Zagorodnov Deutsches Elektronen Synchrotron TU Darmstadt, Fachbereich May 2014.
Introduction to the LHCb masterclass exercise
Eric Prebys, FNAL.  We have focused largely on a kinematics based approach to beam dynamics.  Most people find it more intuitive, at least when first.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Rolling, Torque, and Angular Momentum
Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012 CLASSE Cornell University CHESS & ERL 1 Cornell Laboratory for Accelerator-based ScienceS.
relativity Quantum Classic physics Modern physics.
Department ArtemisObservatoire de la Cote d'Azur1 A Sagnac interferometer with frequency modulation for sensitive saturated absorption (and applications.
Atomic Parity Violation in Ytterbium, K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker
Chapter 1 Electromagnetic Fields
Photodetachment microscopy in a magnetic field Christophe Blondel Laboratoire Aimé-Cotton, Centre national de la recherche scientifique, université Paris-
Towards a Laser System for Atom Interferometry Andrew Chew.
Laser System for Atom Interferometry Andrew Chew.
Measurements using Atom Free Fall
Prospects for gravitational wave detection with atom interferometry
Gravitational Physics using Atom Interferometry
Guillermina Ramirez San Juan
First year talk Mark Zentile
Optical Gyroscope Arman Cingoz 11/3/04. Outline Sagnac Effect Passive Ring Resonator Gyro (Fiber Gyro) Active Ring Resonator (Laser Gyro) Applications.
Vectors 1D kinematics 2D kinematics Newton’s laws of motion
1 Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Introduction to HYPER Measuring Lense-Thirring with Atom Interferometry P. BOUYER Laboratoire Charles Fabry de l’Institut d’Optique Orsay, France.
Lecture 3 Atom Interferometry: from navigation to cosmology Les Houches, 26 Sept E.A. Hinds Centre for Cold Matter Imperial College London.
Light Pulse Atom Interferometry for Precision Measurement
WAG 2013, Bern, Nov. 14, 2013 True Tests of the Weak Equivalence Principle for Antiparticles Unnikrishnan. C. S. Gravitation Group & Fundamental Interactions.
Gravitational Waves (& Gravitons ?)
Physics 311 Classical Mechanics Welcome! Syllabus. Discussion of Classical Mechanics. Topics to be Covered. The Role of Classical Mechanics in Physics.
1 Experimental basis for special relativity Experiments related to the ether hypothesis Experiments on the speed of light from moving sources Experiments.
1 PH604 Special Relativity (8 lectures) Books: “Special Relativity, a first encounter”, Domenico Giulini, Oxford “Introduction to the Relativity Principle”,
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Absorption and Emission of Radiation:
Applications of Atom Interferometry to Fundamental Physics on Earth and in Space Applications of Atom Interferometry to Fundamental Physics on Earth and.
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Classical and Quantum Spins in Curved Spacetimes
18/04/2004New Windows on the Universe Jan Kuijpers Part 1: Gravitation & relativityPart 1: Gravitation & relativity J.A. Peacock, Cosmological Physics,
Quantum interferometric visibility as a witness of general relativistic proper time Bhubaneswar, 21 st December 2011 M. Zych, F. Costa, I. Pikovski, Č.
1 Honors Physics 1 Summary and Review - Fall 2013 Quantitative and experimental tools Mathematical tools Newton’s Laws and Applications –Linear motion.
Relativistic Quantum Theory of Microwave and Optical Atomic Clocks
Comparison of Laser Interferometry and Atom Interferometry for Gravitational Wave Observations in Space Peter L. Bender JILA, University of Colorado Boulder.
Pablo Barberis Blostein y Marc Bienert
VARENNA 2007 Introduction to 5D-Optics for Space-Time Sensors Introduction to 5D-Optics for Space-Time Sensors Christian J. Bordé A synthesis between optical.
Wave Physics PHYS 2023 Tim Freegarde.
Wave Dispersion EM radiation Maxwell’s Equations 1.
Comparison of atom and photon interferometers using 5D optics Comparison of atom and photon interferometers using 5D optics Christian J. Bordé Académie.
Measuring the Earth’s gravity field with cold atom interferometers Olivier Carraz, Christian Siemes, Luca Massotti, Roger Haagmans, Pierluigi Silvestrin.
The ballistic free-fall absolute gravimeter FG5#202  Accuracy : g ( g = 9, 8xx xxx xX m/s²)  1 µgal [= 10 nm/s²]  Vertical displacement of 3.
Tests of Lorentz Invariance with atomic clocks and optical cavities Fundamental Physics Laws: Gravity, Lorentz Symmetry and Quantum Gravity - 2 & 3 June.
qBOUNCE: a quantum bouncing ball gravity spectrometer
Review on the fine-structure constant and the g-2 electron
Chapter 1 Electromagnetic Fields
QUANTUM TRANSITIONS WITHIN THE FUNCTIONAL INTEGRATION REAL FUNCTIONAL
Measurement Science Science et étalons
UNIT-III RIGID BODY DYNAMICS
Nan Yu Jet Propulsion Laboratory California Institute of Technology
Gravitational Quantum States of Antihydrogen
Mac Keiser and Alex Silbergleit
Mach-Zehnder atom interferometer with nanogratings
Classical Mechanics PHYS 2006 Tim Freegarde.
Mac Keiser and Alex Silbergleit
An Introduction To ‘High Speed’ Physics
Atom Optics for Gravitational Wave Detection
G. A. Krafft Jefferson Lab Old Dominion University Lecture 1
Accelerator Physics NMI and Synchrotron Radiation
Accelerator Physics Synchrotron Radiation
Presentation transcript:

VARENNA 2007 Introduction to 5D-Optics for Space-Time Sensors Introduction to 5D-Optics for Space-Time Sensors Christian J. Bordé A synthesis between optical interferometry and matter-wave interferometry

ATOMS ARE QUANTA OF A MATTER-WAVE FIELD JUST LIKE PHOTONS ARE QUANTA OF THE MAXWELL FIELD QM FOR SPACE / ONERA 2005

MOMENTUM E(p) p atom slope=v photon slope=c rest mass ENERGY

CHEMIN OPTIQUE & PRINCIPE DE FERMAT

E(p) p // Recoil energy a b

ATOMES b a a b b a*a* b*b* a b b*b* a b*b* a*a* a*a* abab temps espace

Optical clocks Laser beams Atom beam

Stimulated Raman transitions Raman pulses act as mirrors and beam splitters for matter waves k 2,  2 k 1,  1 |i > |b  |a   ~ 1 GHz Alkali atoms (Rb, Cs) |a  and |b  Hyperfine states Transition Probability  Rabi   Effective two level system Quantum superposition => Rabi oscillations  pulse Atomic mirror  /2 pulse Atomic beam Splitter k2k2 k1k1 |a, p  ħ k eff =ħ(k 1 -k 2 ) |b, p+ ħk eff 

Laser beams Total phase=Action integral+End splitting+Beam splitters Atoms

KLEIN-GORDON EQUATION (Curved space-time)

Elementary interval Metric tensor Analogy with: Post-Newtonian parameters (PPN):

25 July 2003BIPM metrology summer school 2003 ATOM WAVES - Non-relativistic approximation: - Slowly-varying amplitude and phase approximation:

E(p) p BASICS OF ATOM /PHOTON OPTICS Parabolic approximation of slowly varying phase and amplitude Massive particles E(p) p Photons

phase shift Schroedinger-like equation for the atom (photon) field: BASICS OF ATOM /PHOTON OPTICS

25 July 2003BIPM metrology summer school 2003 ATOM WAVES

Minimum uncertainty wave packet: center of the wave packet complex width of the wave packet in physical space velocity of the wave packet width of the wave packet in momentum space conservation of phase space volume z =

ABCD  PROPAGATION LAW Framework valid for Hamiltonians of degree  2 in position and momentum is the classical action where

ABCD  LAW OF ATOM/PHOTON OPTICS

Ehrenfest theorem + Hamilton equations

Hamilton’s equations for the external motion

k β1 k β2 k α1 k α2 β 1 α 1 β 2 α 2 M α1 M β1 M α2 M β2 t 1 t 2 β N k βN M βN β D α D α N t N t D M αN k αN GENERAL FORMULA FOR THE PHASE SHIFT OF AN ATOM INTERFEROMETER

The quantity: is conserved by the ABCD transformations THE LAGRANGE INVARIANT IN ATOM OPTICS Space or Time “Optical System” Then the action difference cancels the mid-point phase shift

The four end-points theorem Ch. Antoine and Ch.J. Bordé, Exact phase shifts for atom interferometry, Phys. Lett. A306, (2003) T= t 2 -t 1 β1 β2 α1 α2 M β M α t 1 t 2

k β1 k β2 k α1 k α2 β 1 α 1 β 2 α 2 M α1 M β1 M α2 M β2 β N k βN M βN β D α D α N M αN k αN GENERAL FORMULA FOR THE PHASE SHIFT OF AN ATOM INTERFEROMETER

Atom Interferometers as Gravito-Inertial Sensors:Analogy between gravitation and electromagnetism 1 00 hg   g  T T Metric tensor Newtonian potential Gravitoelectricfield

Atom Interferometers as Gravito-Inertial Sensors: I - Gravitoelectric field case Gravitational phase shift: T T with light: Einstein red shift with neutrons: COW experiment (1975) with atoms: Kasevich and Chu (1991) Phase shift Circulation of potential Mass independent  (time) 2 Ratio of gravitoelectric flux to quantum of flux

ABCD matrices for matter-wave optics We add a quadratic potential term (gravity gradient):

Exact phase shift for the atom gravimeter which can be written to first-order in  with T=T’  Reference: Ch. J. B., Theoretical tools for atom optics and interferometry, C.R. Acad. Sci. Paris, 2, Série IV, p , 2001

31 Atom Interferometric Gravimeter Performances : –Resolution: 3x10 -9 g after 1 minute –Absolute accuracy:  g/g<3x10 -9 From A. Peters, K.Y. Chung and S. Chu

32 Gradiometer with cold atomic clouds Yale university  Sensitivity: s -2 /  Hz 30 E/  Hz  Potential on earth: 1E/  Hz

Stanford/Yale Gravity Gradiometer: Measurement of G Pb mass translated vertically along gradient measurement axis. Typical data: ~1x10 -8 g change in acceleration due to gravitational forces for different Pb positions Present sensitivity/accuracy: G = 3 x G Measurement consistent with accepted value

Experimental Set-Up  /2  2D-MOT atom interferometer Raman 2 Detection of |a  et |b  3D-MOT 10 7 Rb-atoms in 50 ms T atoms ~2 µK Raman 1 Mirror 2D MOT Passive isolation Plateform Sismometer Magnetic shields

Schéma de principe du gravimètre PMO : Piège Magnéto-Optique Faisceau pousseur  /2  Faisceaux laser Raman Détection Impulsions Raman stimulées temporelles 2T=100 ms = interféromètre Jet d’atomes de 87 Rb refroidis dans un PMO-2D 10 8 atomes piégés en 100 ms refroidis à quelques  K dans un PMO-3D 10 9 à atomes.s -1 Sélection de l’état |5S 1/2, F=1, m F =0 > Faisceaux laser Raman

Enceinte à vide Chambre à vide du PMO 2D Chambre à vide Vanne d’isolation de la réserve Réserve de rubidium PMO 3D Detection

2 paires de faisceaux Raman dans l'enceinte Plans équiphases solidaires de la position du miroir  Mesure des déplacements des atomes par rapport au miroir Montage expérimental Deux faisceaux superposés et retroréfléchis : Raman 1 Raman 2 miroir σ+σ+ σ-σ- σ-σ- σ+σ+ PMO 3D Tps capture : 50 ms T atomes ~2 µK blindage magnétique Détection N at détectés

Interferometer fringes Parameters 2T=100 ms  = 6 µs  v ~ v r N det = 10 6 T c = 250 ms Contrast ~ 45 % Sources of noise - laser phase noise (Phase lock : 3.5 mrad /shot) - mirror vibrations SNR = 25 σ Φ = 1/SNR = 40 mrad/shot  g /g = /shot

Free fall → Doppler shift of the resonance condition of the Raman transition   = k eff.g.T 2 - aT 2 Dark fringe : independent of T Ramping of the frequency difference to stay on resonance : Principle of g measurement π/2 π

Long term stability Bias fluctuations : ± g Fluctuations of the systematic effects Earth tides : ± g Model accurate to a few g Continuous measurements

Earthquake! 2007, January :23 UTC Kuril Islands Magnitude 8.1 Period 17 s

Intégration sans isolation passive - Fonctionnement hors du régime linéaire - Nouvel algorithme d’asservissement : trois mesures consécutives de (P,  vib s ) permettent de déduire l’erreur de phase - Robustesse vis-à-vis des modifications du bruit de vibration Séisme du 20 Mars 2008, Chine, Magnitude 7.7

Atom Interferometers as Gravito-Inertial Sensors: Analogy between gravitation and electromagnetism Metric tensor Gravitomagnetic field Pure inertial rotation

with light: Sagnac (1913) with neutrons: Werner et al.(1979) with atoms: Riehle et al. (1991) Atom Interferometers as Gravito-Inertial Sensors: II - Gravitomagnetic field case Phase shift Circulation of potential Ratio of gravitomagnetic flux to quantum of flux Sagnac phase shift:

Laser beams Atoms COSPAR 2004

Laser beams Atoms

COSPAR 2004 Reference: Ch. J. B., Atomic clocks and inertial sensors, Metrologia 39 (5), (2002) SAGNAC PHASE IN THE ABCD FORMALISM To first order in 

First atom-wave gyro: Riehle et al. 1991

49 Atomic Beam Gyroscope Sensitivity: rad.s -1 /  Hz (Yale University) Magnetic shield Cs oven Wave packet manipulation Atomic beams State preparation Laser cooling Detection Rotation rate (x10 -5 ) rad/s Normalized signal 0 1 Interference fringes

50

 =    2  2  3 Saut de phase  3 (°) Probabilité de transition 2T= 20 ms C v = 0,55 C f = 0,46 F.Leduc, D. Holleville, J.Fils, A. Clairon, N. Dimarcq, A. Landragin, P. Bouyer and Ch.J. Bordé, ICOLS 2003 Gyro-accéléromètre à césium froid du SYRTE

MOT 1 MOT 2 Z X Y Cold atoms Good control of the mean velocity Small velocity dispersion Unique laser beam modulated on time Good stability and knowledge of the scaling factor probe Experimental setup PARAMETERS Cs atoms T atoms ~1 µK Launch velocity 2.4 m/s Angle 8° T c = 0.58 s

Six axes of inertia

Vertical measurements yy Z X Y   /2 azaz 2T = 80 ms Sum of the signals: Acceleration Difference of the signals: Rotation Rejection of the acceleration

Sensitivity Rotation noise (rad/s) second rad/s Integration Time [sec] Acceleration ( m.s -2 ) g second Integration Time [sec] Acceleration limited by vibrations Best signal to noise to rotation: 200 With seismometer correction : g in 1 s Rotation is limited by QPN Competitive with best commercial FOG Sensitivity characterized by the Allan standard deviation

Test of the linearity of the scale factor Changing the orientation of the experiment - modulates the projection of the Earth rotation - changes the rotation rate in a controled way Excellent linearity No quadratic term at the level Fit with a free offset : 29 mrad North South EE x y  z East West yy

Testing the scale factor vs T 2 Rotation signal vs interaction time For two opposite orientations Difference :  rot Sum : bias

Conclusions GRAVIMETER Short term stability g/Hz 1/2 (under noisy environment) Systematic shifts many controlled at the g level, Coriolis & aberrations remain a challenge First comparison showed  g ~ g difference GYROSCOPE Short term sensitivity rad/s/√Hz (limited by atomic shot noise) Long term stability 0.6 to rad/s (limited by wavefront aberrations and fluctuation of the sources) Linearity of the scale factor

3-D COMBINATION OF GRAVITO-INERTIAL FIELDS Exact phase shift for Gravitation+Field gradient+Rotation Ch. Antoine and Ch.J. Bordé, Exact phase shifts for atom interferometry Phys. Lett. A 306 (2003) and Quantum theory of atomic clocks and gravito-inertial sensors: an update Journ. of Optics B: Quantum and Semiclassical Optics, 5 (April 2003)

HYPER HYPER -precision cold atom interferometry in space

61 HYPER Atomic Sagnac Unit Interferometer length 60 cm Atom velocity 20 cm/s Drift time 3 s 10 9 atoms/shot Sensitivity 2x rad/s Area 54 cm 2

LENSE-THIRRING FIELD Gravitomagnetic field lines Gravitomagnetic field generated by a massive rotating body: Field lines ~ to magnetic dipole:

63 HYPER HYPER Lense-Thirring measurement Signal vs time Hyper carries two atomic Sagnac interferometers, each of them is sensitive to rotations around one particular axis. The two units will measure the vector components of the gravitomagnetic rotation along the two axes perpendicular to the telescope pointing to a guide star.

ARBITRARY 3D TIME-DEPENDENT GRAVITO-INERTIAL FIELDS Example: Phase shift induced by a gravitational wave

Atomic phase shift induced by a gravitational wave Ch.J. Bordé, Gen. Rel. Grav. 36 (March 2004) Ch.J. Bordé, J. Sharma, Ph. Tourrenc and Th. Damour, Theoretical approaches to laser spectroscopy in the presence of gravitational fields J. Physique Lettres 44 (1983) L

RELATIVISTIC PHASE SHIFTS gr-qc/ for Dirac particles interacting with weak gravitational fields in matter-wave interferometers