Code Optimization I: Machine Independent Optimizations

Slides:



Advertisements
Similar presentations
Code Optimization and Performance Chapter 5 CS 105 Tour of the Black Holes of Computing.
Advertisements

Program Optimization (Chapter 5)
ECE 454 Computer Systems Programming Compiler and Optimization (I) Ding Yuan ECE Dept., University of Toronto
1 Code Optimization Code produced by compilation algorithms can often be improved (ideally optimized) in terms of run-time speed and the amount of memory.
Winter 2015 COMP 2130 Intro Computer Systems Computing Science Thompson Rivers University Program Optimization.
Fall 2011SYSC 5704: Elements of Computer Systems 1 SYSC 5704 Elements of Computer Systems Optimization to take advantage of hardware.
Code Optimization I September 24, 2007 Topics Machine-Independent Optimizations Basic optimizations Optimization blockers class08.ppt F’07.
1 Program Optimization Professor Jennifer Rexford
Code Optimization I: Machine Independent Optimizations Sept. 26, 2002 Topics Machine-Independent Optimizations Code motion Reduction in strength Common.
Lecture 25 Generating Code for Basic Blocks Topics Code Generation Readings: April 19, 2006 CSCE 531 Compiler Construction.
Code Optimization 1. Outline Machine-Independent Optimization –Code motion –Memory optimization Suggested reading –5.1 ~
Topic #10: Optimization EE 456 – Compiling Techniques Prof. Carl Sable Fall 2003.
Cache Performance Metrics
1 Code Optimization. 2 Outline Machine-Independent Optimization –Code motion –Memory optimization Suggested reading –5.2 ~ 5.6.
University of Amsterdam Computer Systems – optimizing program performance Arnoud Visser 1 Computer Systems Optimizing program performance.
1 Code optimization “Code optimization refers to the techniques used by the compiler to improve the execution efficiency of the generated object code”
Introduction to Computer Systems Topics: Theme Five great realities of computer systems (continued) “The class that bytes”
University of Amsterdam Computer Systems – optimizing program performance Arnoud Visser 1 Computer Systems Optimizing program performance.
Introduction to ECE 454 Computer Systems Programming Topics: Lecture topics and assignments Profiling rudiments Lab schedule and rationale Cristiana Amza.
Chapter 10 Code Optimization Zhang Jing, Wang HaiLing College of Computer Science & Technology Harbin Engineering University.
Computer Organization II Topics: Theme Five great realities of computer systems How this fits within CS curriculum CS 2733.
Compiler Optimizations ECE 454 Computer Systems Programming Topics: The Role of the Compiler Common Compiler (Automatic) Code Optimizations Cristiana Amza.
Code Optimization II: Machine Dependent Optimization Topics Machine-Dependent Optimizations Unrolling Enabling instruction level parallelism.
Machine Independent Optimizations Topics Code motion Reduction in strength Common subexpression sharing.
Code Optimization and Performance CS 105 “Tour of the Black Holes of Computing”
Programming for Performance CS 740 Oct. 4, 2000 Topics How architecture impacts your programs How (and how not) to tune your code.
1 Code Optimization. 2 Outline Machine-Independent Optimization –Code motion –Memory optimization Suggested reading –5.2 ~ 5.6.
CS 3214 Computer Systems Godmar Back Lecture 8. Announcements Stay tuned for Project 2 & Exercise 4 Project 1 due Sep 16 Auto-fail rule 1: –Need at least.
Code Optimization and Performance I Chapter 5 perf01.ppt CS 105 “Tour of the Black Holes of Computing”
©SoftMoore ConsultingSlide 1 Code Optimization. ©SoftMoore ConsultingSlide 2 Code Optimization Code generation techniques and transformations that result.
Code Optimization Code produced by compilation algorithms can often be improved (ideally optimized) in terms of run-time speed and the amount of memory.
Code Optimization Overview and Examples
Code Optimization.
Introduction To Computer Systems
Analysis of Algorithms
Today’s Instructor: Phil Gibbons
Optimization Code Optimization ©SoftMoore Consulting.
CS 3114 Many of the following slides are taken with permission from
Instructors: Dave O’Hallaron, Greg Ganger, and Greg Kesden
Program Optimization CENG331 - Computer Organization
Instructors: Pelin Angin and Erol Sahin
Program Optimization CSCE 312
Machine-Dependent Optimization
Code Optimization /18-213/14-513/15-513: Introduction to Computer Systems 10th Lecture, September 27, 2018.
Introduction to Computer Systems
Code Optimization and Performance
Code Optimization I: Machine Independent Optimizations Feb 11, 2003
Compiler Code Optimizations
Instructors: Majd Sakr and Khaled Harras
Code Optimization April 6, 2000
Code Optimization I Nov. 25, 2008
Algorithm Analysis and Design
Machine-Level Programming 5 Structured Data
Introduction to Computer Systems
Analysis of Algorithms
Machine-Level Programming 5 Structured Data
COMP 2130 Intro Computer Systems Thompson Rivers University
Optimizing program performance
Analysis of Algorithms
Cache Memories Lecture, Oct. 30, 2018
Program Optimization CSE 238/2038/2138: Systems Programming
Structured Data I: Homogenous Data Feb. 10, 2000
CS 3114 Many of the following slides are taken with permission from
Machine-Independent Optimization
Code Optimization and Performance
Analysis of Algorithms
CMPE 152: Compiler Design April 30 Class Meeting
Code Optimization II October 2, 2001
Code Optimization.
Presentation transcript:

Code Optimization I: Machine Independent Optimizations Systems I Code Optimization I: Machine Independent Optimizations Topics Machine-Independent Optimizations Code motion Reduction in strength Common subexpression sharing Tuning Identifying performance bottlenecks

There’s more to performance than asymptotic complexity Great Reality There’s more to performance than asymptotic complexity Constant factors matter too! Easily see 10:1 performance range depending on how code is written Must optimize at multiple levels: algorithm, data representations, procedures, and loops Must understand system to optimize performance How programs are compiled and executed How to measure program performance and identify bottlenecks How to improve performance without destroying code modularity and generality

Optimizing Compilers Provide efficient mapping of program to machine register allocation code selection and ordering eliminating minor inefficiencies Don’t (usually) improve asymptotic efficiency up to programmer to select best overall algorithm big-O savings are (often) more important than constant factors but constant factors also matter Have difficulty overcoming “optimization blockers” potential memory aliasing potential procedure side-effects

Limitations of Optimizing Compilers Operate Under Fundamental Constraint Must not cause any change in program behavior under any possible condition Often prevents it from making optimizations when would only affect behavior under pathological conditions. Behavior that may be obvious to the programmer can be obfuscated by languages and coding styles e.g., data ranges may be more limited than variable types suggest Most analysis is performed only within procedures whole-program analysis is too expensive in most cases Most analysis is based only on static information compiler has difficulty anticipating run-time inputs When in doubt, the compiler must be conservative

Machine-Independent Optimizations Optimizations you should do regardless of processor / compiler Code Motion Reduce frequency with which computation performed If it will always produce same result Especially moving code out of loop for (i = 0; i < n; i++) { int ni = n*i; for (j = 0; j < n; j++) a[ni + j] = b[j]; } for (i = 0; i < n; i++) for (j = 0; j < n; j++) a[n*i + j] = b[j];

Compiler-Generated Code Motion Most compilers do a good job with array code + simple loop structures Code Generated by GCC for (i = 0; i < n; i++) { int ni = n*i; int *p = a+ni; for (j = 0; j < n; j++) *p++ = b[j]; } for (i = 0; i < n; i++) for (j = 0; j < n; j++) a[n*i + j] = b[j]; imull %ebx,%eax # i*n movl 8(%ebp),%edi # a leal (%edi,%eax,4),%edx # p = a+i*n (scaled by 4) # Inner Loop movl 12(%ebp),%edi # b .L40: movl (%edi,%ecx,4),%eax # b+j (scaled by 4) movl %eax,(%edx) # *p = b[j] addl $4,%edx # p++ (scaled by 4) incl %ecx # j++ cmpl %ebx,%ecx # loop if j<n jl .L40

Reduction in Strength Replace costly operation with simpler one Shift, add instead of multiply or divide 16*x --> x << 4 Utility machine dependent Depends on cost of multiply or divide instruction On Pentium II or III, integer multiply only requires 4 CPU cycles Recognize sequence of products int ni = 0; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) a[ni + j] = b[j]; ni += n; } for (i = 0; i < n; i++) for (j = 0; j < n; j++) a[n*i + j] = b[j];

Make Use of Registers Limitation Reading and writing registers much faster than reading/writing memory Limitation Compiler not always able to determine whether variable can be held in register Possibility of Aliasing See example later

Machine-Independent Opts. (Cont.) Share Common Subexpressions Reuse portions of expressions Compilers often not very sophisticated in exploiting arithmetic properties /* Sum neighbors of i,j */ up = val[(i-1)*n + j]; down = val[(i+1)*n + j]; left = val[i*n + j-1]; right = val[i*n + j+1]; sum = up + down + left + right; int inj = i*n + j; up = val[inj - n]; down = val[inj + n]; left = val[inj - 1]; right = val[inj + 1]; sum = up + down + left + right; 3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n leal -1(%edx),%ecx # i-1 imull %ebx,%ecx # (i-1)*n leal 1(%edx),%eax # i+1 imull %ebx,%eax # (i+1)*n imull %ebx,%edx # i*n

Time Scales Absolute Time Clock Cycles Typically use nanoseconds Time scale of computer instructions Clock Cycles Most computers controlled by high frequency clock signal Typical Range 100 MHz 108 cycles per second Clock period = 10ns 2 GHz 2 X 109 cycles per second Clock period = 0.5ns

Example of Performance Measurement Loop unrolling Assume even number of elements void vsum1(int n) { int i; for(i=0; i<n; i++) c[i] = a[i] + b[i]; } void vsum2(int n) { int i; for(i=0; i<n; i+=2) { c[i] = a[i] + b[i]; c[i+1] = a[i+1] + b[i+1]; }

Cycles Per Element Convenient way to express performance of program that operators on vectors or lists Length = n T = CPE*n + Overhead vsum1 Slope = 4.0 vsum2 Slope = 3.5

Code Motion Example Procedure to Convert String to Lower Case void lower(char *s) { int i; for (i = 0; i < strlen(s); i++) if (s[i] >= 'A' && s[i] <= 'Z') s[i] -= ('A' - 'a'); }

Lower Case Conversion Performance Time quadruples when string length doubles Quadratic performance

Convert Loop To Goto Form void lower(char *s) { int i = 0; if (i >= strlen(s)) goto done; loop: if (s[i] >= 'A' && s[i] <= 'Z') s[i] -= ('A' - 'a'); i++; if (i < strlen(s)) goto loop; done: } strlen executed every iteration strlen linear in length of string Must scan string until finds '\0' Overall performance is quadratic

Improving Performance void lower(char *s) { int i; int len = strlen(s); for (i = 0; i < len; i++) if (s[i] >= 'A' && s[i] <= 'Z') s[i] -= ('A' - 'a'); } Move call to strlen outside of loop Since result does not change from one iteration to another Form of code motion

Lower Case Conversion Performance Time doubles when double string length Linear performance

Optimization Blocker: Procedure Calls Why couldn’t the compiler move strlen out of the inner loop? Procedure may have side effects Alters global state each time called Function may not return same value for given arguments Depends on other parts of global state Procedure lower could interact with strlen Why doesn’t compiler look at code for strlen? Linker may overload with different version Unless declared static Interprocedural optimization is not used extensively due to cost Warning: Compiler treats procedure call as a black box Weak optimizations in and around them

Summary Today Next time Improving program performance (machine independent) Mostly focusing on instruction count Next time Optimization blocker: procedure calls Optimization blocker: memory aliasing Tools (profiling) for understanding performance